Waste Tank Summary Report for Month Ending November 30, 1999 Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management # CH2MHILL Hanford Group, Inc. Richland, Washington Contractor for the U.S. Department of Energy Office of River Protection under Contract DE-AC06-99RL14047 Approved for Public Release; Further Dissemination Unlimited #### LEGAL DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Available in paper copy and microfiche. Available electronically at http://www.doe.gov/bridge. Available for a processing fee to the U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865-576-8401 fax: 865-576-5728 email: reports@adonis.osti.gov(423) 576-8401 Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Phone: 800-553-6847 fax: 703-605-6900 email: orders@ntis.fedworld.gov online ordering: http://www.ntis.gov/ordering.htm Printed in the United States of America ## Waste Tank Summary Report for Month Ending November 30, 1999 B. M. Hanlon CH2M Hill Date Published January 2000 Prepared for the U.S. Department of Energy Assistant Secretary for Environmental Management P. O. Box 1500 Richland, Washington Contractor for the U.S. Department of Energy Office of River Protection under Contract DE-AC06-99RL14047 ## RELEASE AUTHORIZATION **Document Number:** HNF-EP-0182-140 **Document Title:** WASTE TANK SUMMARY REPORT FOR MONTH ENDING NOVEMBER 30, 1999 This document, reviewed in accordance with DOE Order 241.1, "Scientific and Technical Information Management," and 241.1-1, "Guide to the Management of Scientific and Technical Information," does not contain classified or sensitive unclassified information and is: ## APPROVED FOR PUBLIC RELEASE Mark A. Williams Lockheed Martin Services, Inc. Document Control/Information Clearance Reviewed for Applied Technology, Business Sensitive, Classified, Copyrighted, Export Controlled, Patent, Personal/Private, Proprietary, Protected CRADA, Trademark, Unclassified Controlled Nuclear Information. Trademark Disclaimer. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or fevering by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report has been reproduced from the best available copy. Printed in the United States of America. ## RELEASE AUTHORIZATION **APPROVALS** Prepared by: B. M. Hanlon Hanlon 1/5/00_ nion Date Responsible Manager: C. DeFigh-Price Manager Date Process Engineering This page intentionally left blank. ## WASTE TANK SUMMARY REPORT ## B. M. Hanlon ### **ABSTRACT** This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 63 smaller miscellaneous underground storage tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of U. S. Department of Energy-Richland Operations Office Order 435.1 (DOE-RL, July 1999, Radioactive Waste Management, U. S. Department of Energy-Richland Operations Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm tanks. This page intentionally left blank. ## **CONTENTS** | | Page | |-----|---| | SU | JMMARY | | I. | WASTE TANK STATUS | | Π. | WASTE TANK INVESTIGATIONS | | Ш. | | | 111 | SURVEILLANCE AND WASTE TANK STATUS INGILLIGITIS | | Αŗ | ppendixes: | | A. | WASTE TANK SURVEILLANCE MONITORING TABLES | | | Tables: | | | 1 Temperature Monitoring in Watch List Tanks | | | 2 Temperature Monitoring in Non-Watch List Tanks | | | 3 Additions/Deletions to Watch List Tanks by Year | | | 4 Single-Shell Tank Monitoring Compliance Status | | | 5 Double-Shell Tanks Monitoring Compliance Status | | | 6 ENRAF Surface Level Gauge Installation and Data Input Methods | | | 7 Tank Monitoring and Control System (TMACS) Monitoring Status | | B. | DOUBLE-SHELL TANK WASTE TYPE AND SPACE ALLOCATION | | | Tables: | | | 1 Double-Shell Tank Waste Inventory B-2 | | | Figures: 1 Total Double-Shell Tank Total Inventory B-4 | | C. | TANK AND EQUIPMENT CODE AND STATUS DEFINITIONS | | | 1 Tank and Equipment Code/Status Definitions | | D. | TANK FARM CONFIGURATION, STATUS AND FACILITY CHARTS D-1 | | | Figures: | | | 1 High-Level Waste Tank Configuration | | | 2 Double-Shell Tank Instrumentation Configuration | | | 3 Single-Shell Tank Instrumentation Configuration D-4 | | F. | MONTHLY SUMMARY E-1 | | | Tables: | | | 1 Monthly Summary E-2 | | | 2 Tank Use Summary | | | 3 Pumping Record, and Liquid Status and Pumpable Liquid Remaining | | | In Tanks | | | 4 Inventory Summary by Tank Farm E-5 | | | 5 Inventory and Status by Tank - Double-Shell Tanks E-6 | | | 6 Inventory and Status by Tank - Single-Shell Tanks E-8 | | F. | PERFORMANCE SUMMARY F-1 | | | <u>Table</u> : | | | 1 Summary of Waste Transactions in the Double-Shell Tanks F-2 | | | 2 Comparison of Projected Versus Actual Waste Volumes for | | | Hanford Facilities F-3 | | G. | MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE FACILITIES | |----|--| | | 1 Misc. Underground Storage Tanks and Special Surveillance Facilities (Active). G-2 | | | 2 East Area Inactive Underground Storage Tanks and Special Surveillance | | | Facilities (Inactive) G-3 | | | 3 West Area Inactive Underground Storage Tanks and Special Surveillance | | | Facilities (Inactive) G-4 | | H. | LEAK VOLUME ESTIMATES | | I. | SINGLE-SHELL TANKS INTERIM STABILIZATION, AND CONTROLLED, CLEAN | | | AND STABLE STATUS I-1 Tables: 1 Single-Shell Tanks Interim Stabilization Status I-2 2 Single-Sell Tank Interim Stabilization Milestones I-4 3 Single-Shell Tanks Stabilization Status Summary I-6 | | METRIC CONVERSION CHART | | | | | | | | | |---|---|-------------------|--|--|--|--|--|--| | 1 inch = 2.54 centimeters | | | | | | | | | | l foot | = | 30.48 centimeters | | | | | | | | 1 gallon | = | 3.80 liters | | | | | | | | 1 ton = 0.90 metric tons | | | | | | | | | | $^{\circ}\mathbf{F} = \left(\frac{9}{5} ^{\circ}\mathbf{C}\right) + 32$ | | | | | | | | | | 1 Btu/h = 2.930711 E-01 watts (International Table) | | | | | | | | | ## WASTE TANK SUMMARY REPORT FOR MONTH ENDING NOVEMBER 30, 1999 Note: Changes from the previous month are in bold print. ## I. WASTE TANK STATUS | Category | Quantity | Date of Last Change | |--|------------------------------------|---------------------| | Double-Shell Tanks ^b | 28 double-shell | 10/86 | | Single-Shell Tanks | 149 single-shell | 1966 | | Assumed Leaker Tanks | 67 single-shell | 07/93 | | Sound Tanks | 28 double-shell
82 single-shell | 1986
07/93 | | Interim Stabilized Tanks | 120 single-shell | 11/99 | | Not Interim Stabilized° | 29 single-shell | 11/99 | | Intrusion Prevention Completed | 108 single-shell | 09/96 | | Controlled, Clean, and Stable ^f | 36 single-shell | 09/96 | | Watch List Tanks ^d | 22 single-shell
6 double-shell | 12/98°
06/93 | | Total | 28 tanks | | ^a Of the 120 tanks classified as Interim Stabilized, 64 are listed as Assumed Leakers. (See Table I-1) ## II. WASTE TANK INVESTIGATIONS This section includes all single- or double-shell tanks or catch tanks which are showing surface level or interstitial liquid level (ILL) decreases, or drywell radiation level increases in excess of established criteria. ## A. Assumed Leakers or Assumed Re-leakers: (See Appendix C for definition of "Re-leaker") This section includes all single- or double-shell tanks or catch tanks for which an off-normal or unusual occurrence report has been issued, or for which a waste tank investigation is in progress, for assumed leaks or re-leaks. ^b Six double-shell tanks are currently included on the Hydrogen Watch List and are thus prohibited from receiving waste in accordance with "Safety Measures for Waste Tanks at Hanford
Nuclear Reservation," Section 3137 of the National Defense Authorization Act for Fiscal Year 1991, November 5, 1990, Public Law 101-510. ^c Three of these tanks are Assumed Leakers (BY-105, BY-106, SX-104). (See Table H-1) ^d Sec Section A tables for more information on Watch List Tanks. ^{*} Dates for the Watch List tanks are "officially added to or removed from the Watch List" dates. Eighteen tanks were removed from the Organics Watch List in December 1998; two tanks still remain on this watch list. ^f The TY tank farm was officially declared Controlled, Clean, and Stable (CCS) in March 1996. The TX tank farm and BX tank farms were declared CCS in September 1996. Tanks/catch tanks will remain on this list until either a) completion of Interim Stabilization, b) the updated occurrence report indicates that the tank/catch tank is not an assumed leaker, or c) the investigation is completed. There are no formal leak investigations in progress. There are no tanks for which an off-normal or unusual occurrence report has been issued for assumed leaks or re-leaks. #### B. Tanks with increases indicating possible intrusions: This section includes all single-shell tanks and related receiver tanks for which the surveillance data show that the surface level or ILL has met or exceeded the increase criteria, or are still being investigated. Candidate Intrusion List: Increase criteria in the following tanks indicate possible intrusions. Tank 241-B-202 Tank 241-BX-101 Tank 241-BX-103 Tank 241-BY-103 The surveillance data was last reviewed on the tanks listed as having probable liquid intrusions. (Ref: Memo 74B20-99-045, dated November 22, 1999.) Catch Tank 241-AX-152: The liquid level in this catch tank was steady around 66.75 inches from the startup of Project W-030, Tank Farm Ventilation System," in March 1998 until late August 1998. The level then began to decrease. The October 1998 reading of 65 inches is 1.75 inches below the summer average. This is an active catch tank, routinely pumped, and deviations from baseline are not applicable per OSD-00031. The decrease represents a significant change in trend and it is apparent that tank conditions changed around the end of August 1998. Resolution Status: Discrepancy Report #98-853 was issued on November 4, 1998. One possible cause under investigation is a change in flow path, causing an increase in evaporation. The tank was pumped down to 2.25 inches on November 13, 1998. Since that time the level has decreased to 0.00 inches. The Discrepancy Report will remain open and catch tank AX-152 will remain on the alert list until an engineering investigation is complete. Preparation of Work Package ES-99-00133 to perform an airflow rate assessment in the tank is continuing. There are still issues to be resolved before the preparation of this Work Package can be completed. ## III. SURVEILLANCE AND WASTE TANK STATUS HIGHLIGHTS ## 1. Single-Shell Tank Interim Stabilization <u>Tank 241-T-104 - This tank was Interim Stabilized on November 19, 1999. Final Solids volume 316.8 Kgallons (Sludge, no Saltcake), Supernate 0 Kgallons (per video), DIL 31.2 Kgallons, DLR 31.2 Kgallons, PLR 26.9 Kgallons. See Table E-6 footnotes for further information.</u> ### 2. Single-Shell Tanks Saltwell Jet Pumping (See Table E-6 footnotes for further information) <u>Tank 241-C-106</u> - Waste removal operations were initiated on November 18, 1998. Although sluicing of C-106 was considered complete in September 1999, and DOE-HQ was requested to remove this tank from the high heat load list, an additional 0.14 inches of sludge were removed in October 1999. The cumulative total sludge removed following the sluicing in October was 67.8 inches. (See also Table E-6, Tank Inventory and footnotes, for final liquid/solids volumes per HNF-5267, "Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation," Rev 2, November 17, 1999.) Still awaiting response from DOE-HQ to remove this tank from the high heat load list as of November 30, 1999. It is expected approval will be received in December 1999. <u>Tank 241-S-102</u> - Pumping continued until November 17, 1999, when pump problems forced a shutdown. In November 1999, 3.8 Kgallons were pumped; a total of 42.8 Kgallons has been pumped from this tank since pumping started in March 1999. <u>Tank 241-S-103</u> - Saltwell pumping commenced on June 4, 1999. In November 1999, 1.8 Kgallons were pumped; a total of 22.8 Kgallons has been pumped from this tank since pumping started in June 1999. <u>Tank 241-S-106</u> - Pumping restarted on April 15, 1999, after an earlier pumping campaign in the 1980s. In November 1999, 3.0 Kgallons were pumped; a total of 201.6 Kgallons has been pumped from this tank since pumping began in the 1980s. <u>Tank 241-SX-104</u> - Pumping was interrupted on July 27, 1999, by a leaking saltwell pump. This tank is being evaluated for stabilization based on equipment failure. A total of 231.3 Kgallons has been pumped from this tank since pumping started in the late 1980s. <u>Tank 241-SX-106</u> - In November 1999, 3.6 Kgallons were pumped; a total of 147.3 Kgallons has been pumped from this tank since start of pumping in October 1998. <u>Tank 241-T-110</u> - No pumping took place in November 1999; the tank is currently undergoing stabilization evaluations. An in-tank video was taken October 7, 1999. A total of 50.3 Kgallons has been pumped from this tank since start of pumping in May 1997. <u>Tank 241-U-103</u> - Pumping commenced September 26, 1999. In November 1999, 1.4 Kgallons were pumped; a total of 52.3 Kgallons has been pumped from this tank since start of pumping in September 1999. #### 3. <u>Double-Shell Tank 241-SY-101 Waste Level Increase</u> Tank 241-SY-101 exhibited gas release events due to generation and retention of flammable gas. Waste level was used as an indirect measure of retained gas inventory. A mixer pump was installed in the tank in July 1993, which circulates liquid wastes. This prevents gas bubbles from building up at the bottom, and results in venting of small steady gas releases. Since early 1997, the surface level has been rising in spite of regular mixer pump operations. Since April 1999, the surface level has remained relatively constant, indicating that gas release rates have equaled the estimated gas generation rate. Resolution Status: On February 11, 1998, the PRC recommended that the DOE-RL declare an Unreviewed Safety Question (USQ) over the continued level growth observed in this tank. DOE has modified the 406-inch and 422-inch mixer pump operational controls to allow additional mixer pump and characterization operations. The contractor has established a multi-disciplinary team to solve the level growth issues in SY-101. The prime near-term focus is to transfer approximately 100,000 gallons out of SY-101. Equipment and instrumentation were installed in September 1999 to transfer approximately 100 Kgallons of waste from SY-101 to SY-102. Actions needed to support the first transfer from SY-101 during the 1st Quarter FY2000 are on schedule. It is anticipated that pumping will begin in December 1999. ## 4. Waste Tanks Characterization Studies The Defense Nuclear Facilities Safety Board recommended to the DOE Secretary of Energy, on November 15, 1999, that Recommendation 93-5, *Waste Tanks Characterization Studies*, be closed. Their review indicated the responsive actions and technical resolutions described in the summary was sufficient. Appendix J, Characterization Safety Screening Status, has been deleted from this report. ## 5. RL-PHMC-TANKFARM-1999-0063, Occurrence Report, "An Unreviewed Safety Question Was Discovered," Unusual Occurrence, Latest update November 4, 1999. The completion times identified in LCO 3.1.3, Transfer Leak Detection Systems, action statement A.2.2.1, "Verify there is no detectable leakage at the leak detection location using an alternate monitoring device," could allow operation outside the analyzed Authorization Basis. This action statement allows the use of alternate leak detection devices with a surveillance frequency not supported by the Authorization Basis. Standing Order #TWO-99-34 was issued to prohibit implementation of this action statement until this issue is resolved. The Plant Review Committee directed performance of an Unreviewed Safety Question Determination. On October 11, 1999, this event was upgraded to "Unusual Occurrence." A final report will be submitted on or before April 1, 2000. November 4, 1999: The following information was transferred from UOR -1999-0055 to this report: On August 3, 1999, the Plant Review Committee (PRC) concluded that a Potential Inadequacy in Authorization Basis (PIAB) exists with respect to the inadequacy of the applicability statement of Limiting Conditions to Operation (LC0s) 3.3.3 and 3.3.3. Process area applicability of transfer system covers that are "PHYSICALLY CONNECTED to an ACTIVE WASTE transfer pump not under administrative lock" may be inadequate for 242-A Evaporator emergency dump configurations. ## 6. RP-LMHC-TANKFARM-1999-0010, Occurrence Report, "311-ER Vapor Sample Indicated High Lower Flammability Limit Reading," Off-Normal, Notification November 2, 1999. On November 1, 1999, 241-ER-311 Catch Tank was vapor sampled during planned Characterization Operations sampling. The results of the sampling with a Combustible Gas Meter (CGM) revealed a reading of >25% Lower Flammability Limit (LFL) reading. A second reading was obtained using a different instrument; again the reading was >25% LFL. Both readings were off scale (HIGH). Samples wee captured and sent to the lab for analysis. All work was terminated on or near tank ER-311. Restricted access to the fenced area that surrounds this tank was initiated by controlling the entrance key and posting the gate, pending further investigation and subsequent resolution. ### Status as of November 30, 1999: The Plant Review Committee met on November 9, 1999, to
review sample data and status of field activities. A portable exhauster has been installed to remove the argon used to dilute/displace flammable concentrations of hydrogen. Operational restrictions remain on ER-311 and adjacent facilities (ER-311 pump pit, ER-151 and ER-152 diversion boxes). ## APPENDIX A ## WASTE TANK SURVEILLANCE MONITORING TABLES ## TABLE A-1. TEMPERATURE MONITORING IN WATCH LIST TANKS (Sheet 1 of 2) November 30, 1999 These tanks have been identified as Watch List Tanks in accordance with Public Law 101-510, Section 3137, "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," (1990), because they "... may have a serious potential for release of high-level waste due to uncontrolled increases in temperature or presssure." All Watch List tanks are reviewed for increasing temperature trends. Temperatures in these tanks are monitored by the Tank Monitor And Control System (TMACS), unless indicated otherwise. Temperatures are taken in the waste unless in-waste thermocouples are out of service. Temperatures below are the highest temperatures recorded in these tanks during this month. ## Temperatures in Degrees F. | | | SINGLE-SHE | LL TANKS | | | | | |--------------|------------|---------------------|---------------|-----------------|-------------------|--|--| | Ну | drogen (Fl | ammable Gas) | Organics | | | | | | | | Officially Added to | ļ | Of | ficially Added to | | | | Tank No. | Temp. | Watch List | Tank No. | Temp. | Watch List | | | | A-101 | 147 | 1/91 | C-102 | 83 | 5/94 | | | | AX-101 | 128 | 1/91 | C-103 | 116 | 1/91 | | | | AX-103 | 110 | 1/91 | 2 Tanks | | | | | | S-102 * | 103 | 1/91 | | | | | | | S-111* | 91 | 1/91 | | | | | | | S-112* | 85 | 1/91 | | High Heat | Load | | | | SX-101* | 132 | 1/91 | | | Officially | | | | SX-102* | 141 | 1/91 | İ | | Added to | | | | SX-103* | 159 | 1/91 | Tank No. | Temp. | Watch List | | | | SX-104* | 142 | 1/91 | C-106 (2) | 70 | 1/91 | | | | SX-105* 165 | | 1/91 | Tank | | | | | | SX-106* | 102 | 1/91 | | | | | | | \$X-109 (1)* | 138 | 1/91 | Stuicing was | completed in S | September | | | | T-110° | 65 | 1/91 | 1999, and a f | ormal request | was made to | | | | U-103 | 87 | 1/91 | DOE-HQ to re | move this tan | k from the | | | | U-105 | 89 | 1/91 | High Heat Los | d Watch List. | | | | | U-107 | 78 | 12/93 | ļ | | | | | | U-108 | 87 | 1/92 | | | | | | | U-109 | 83 | 1/91 | | | | | | | 19 SSTe | | | | | | | | | D | OUBLE-SH | IELL TANKS | | | | | | | AN-103 | 107 | 1/91 | | · | | | | | AN-104 | 107 | 1/91 | 22 | Single-Shell ta | ınks | | | | AN-105 | 100 | 1/91 | _6_ | Double-Shell 1 | anks | | | | AW-101 | 100 | 6/93 | 28 | Tanks on Wat | ch Lists | | | | SY-101 | 124 | 1/91 | Ì | | | | | | SY-103 | 95 | 1/91 | | | | | | | 6 DST: | | | | | | | | All tanks were removed from the Ferrocyanide and 18 tanks from the Organics Watch Lists. See Table A-2. (*) TMACS is O/S due to power outage which caused damage to acromage in T, TX and TY farms since August 1999. TMACS has not worked properly in S and SX farms since November 20, 1999; being repaired. Manual readings taken weekly. ## TABLE A-1. TEMPERATURE MONITORING IN WATCH LIST TANKS (sheet 2 of 2) ## Notes: ## Unreviewed Safety Ouestion(USO): When a USQ is declared, special controls are required, and work in the tanks is limited. There are currently no USQs on single-shell tanks. There is a USQ on double-shell tank SY-101 for liquid level increase. ## Hydrogen/Flammable Gas: These tanks are suspected of having a significant potential for hydrogen/flammable gas generation, entrapment, and episodic release. The USQ associated with these tanks was closed in September 1998. Twenty-five tanks (19 SST and 6 DST) remain on the Hydrogen Watch List. #### Organic Salts: These tanks contain concentrations of organic salts ≥3 weight% of total organic carbon (TOC)(equivalent to 10 wt% sodium acetate). The USQ associated with these tanks was closed in October 1998, and 18 organic complexant tanks were removed from the Organic Watch List in December 1998. Two organic solvent tanks (C-102 and C-103) remain on the Organic Watch List. #### High Heat: These tanks contain heat generating strontium-rich sludge and require drainable liquid to be maintained in the tank to promote cooling. #### Active ventilation: There are 15 single-shell tanks on active ventilation (eight are on the Watch List as indicated by an asterisk): | C-105 | SX-107 | |----------|----------| | C-106 * | SX-108 | | SX-101 * | SX-109 * | | SX-102 * | SX-110 | | SX-103 * | SX-111 | | SX-104 * | SX-112 | | SX-105 * | SX-114 | | SX-106 * | | ## Footnotes: - (1) Tank SX-109 has the potential for flammable gas accumulation only because other SX tanks vent through it. - (2) Tank C-106 is on the Watch List because in the event of a leak without water additions the tank could have exceeded temperature limits resulting in unacceptable structural damage. Sluicing of C-106 has been completed and liquid and sludge have been removed to the point that cooling water no longer needs to be added. A request was sent to DOE-HQ in September 1999 for removal of tank C-106 from the High Heat Load Watch List. ## TABLE A-2 TEMPERATURE MONITORING IN NON-WATCH LIST TANKS November 30, 1999 ### SINGLE-SHELL TANKS WITH HIGH HEAT LOADS (>26,000 Btu/hr) Nine tanks have high heat loads for which temperature surveillance requirements are established by HNF-SD-WM-TSR-006, Rev 1, Tank Waste Remediation System Technical Safety Requirements, December 1999. Only one of these tanks (241-C-106) is on the High Heat Watch List. In an analysis, WHC-SD-WM-SARR-010, Rev 1, Heat Removal Characteristics of Waste Storage Tanks, Kummerer, 1995, it was estimated that nine tanks have heat sources >26,000 Btu/hr, which is the new parameter for determining high heat load tanks. See also document HNF-SD-WM-BIO-001, Rev 1, Tank Waste Remediation System Basis for Interim Operation, Noorani, 199 Temperatures in these tanks did not exceed TSR requirements for this month, and are monitored by the Tank Monitor and Control System (TMACS), unless indicated otherwise. All high heat load tanks are on active ventilation. | Tank No. | Temperatu | re (F.) | |-----------|-----------|------------| | C-106 (1) | 70 | (Riser 14) | | | 70 | (Riser 8) | | SX-103* | 159 | | | SX-107* | 166 | | | SX-108* | 184 | | | SX-109* | 137 | | | SX-110* | 164 | | | SX-111* | 185 | | | SX-112* | 150 | | | SX-114* | 175 | | | 9 Tanks | | | #### Notes: - C-106 is on the High Heat Load Watch List. A request was sent to DOE-HQ in September 1999 for removal of tank C-106 from the High Heat Load Watch List. - (*) TMACS has not worked properly in SX farm since November 20, 1999; being repaired. Manual readings taken weekly. ## SINGLE SHELL TANKS WITH LOW HEAT LOADS (<26,000 Btu/hr) There are 119 low heat load non-watch list tanks. Temperatures in tanks connected to TMACS are monitored by TMACS; temperatures in those tanks not yet connected to TMACS are manually taken semiannually in January and July. Temperatures obtained were within historical ranges for the applicable tank. No temperatures have been obtained for several years in the tanks listed below. Most of these tanks have no thermocouple tree. | Tank No. | Tank No. | |----------|----------| | BX-104 | TX-101 | | BY-102 | TX-110 | | BY-109 | TX-114 | | C-204 | TX-116 | | SX-115 | TX-117 | | T-102 | U-104 | | T-105 | | ## TABLE A-3. ADDITIONS/DELETIONS TO WATCH LISTS BY YEAR November 30, 1999 Added/Deleted dates may differ from dates that tanks were officially added to the Watch Lists. (See Table A-1). | | | | 1 | | • | , | | | | ks (1) | |--|-----------|---|------------------------------|-------|-----------------------------|---------------------|------|-----|---------------------|----------------| | | | ocyanide | Hydrogen | Org | anics | High Hea | t | SST | DST | Total | | /91 Original Lat Response to Public Law 101-5 | | negativa (s. 1851) | 28 | 8 | elepiae Signiae (II.) | Sept 10 au | | 4.7 | | Tigli jih | | Added 2/91 (revision to Original List) ortal - December 31, 1991 | 1 | T-107 | iic (23 iilogaanaan kija jii | | janos asianis en- | | | 1 | A COLUMN TO SERVICE | i distributada | | Added 8/92 | 2014/2018 | e kineral in Plant in Paris ("Tea te tele". | 1 AW-101 | 10000 | ikinisi celebbi de | 100 | 1 | 48 | 5 | | | otal - December 31, 1992 | 124 | | 24 | 8 | | | | 4B | 8 | T. I | | Added 3/93 | | | | 1 | U-111 | 7000007 \$ 00.0860 | | 1 | | | | Deleted 7/93 | -4 | (BX-110) | | | | | | -4 | | | | | | (BX-111) | | | | | | | ł | 1 | | | i | (BY-101)
(T-101) | | i | | Ī | | | ĺ | | | Added 12/93 | 1 | (1-101) | 1 (U-107) | | | | | ٥ | [[| ĺ | | ta December 31) 1993 | 20 | | 26 | | | | | 45 | . 6 | | | Added 2/94 | | | | 1 | T-111 | an nantisa satangsa | 96 | 1 | oth Color W. | HECH RE | | Added 5/94 | | | " | 10 | A-101 | | | 4 | i | | | | ĺ | | | | AX-102 | | | | | ļ | | | | | | | C-102 | | | | | | | | | | | | S-111
SX-103 | | | | | | | | | | | | TY-104 | | | | | | | - | İ | | | | U-103 | | | | | | | | | | | | U-105 | | | | | | | | | | | | U-203 | | 16 | | | | | Deleted 11/94 | | ·2 (BX-102) | | | U-204 | | | | | | | | | (BX-108) | | | | | | -2 | | | | al - December 1994 thiru December 1995 | 18 | | 26 | 20 | | | Н | 48 | - 6 | € . | | Deleted 6/96 | -4 | (C-108) | | | 200.00 - 0.00 - 0.00 - 0.00 | 30000 | | -4 | | 3.55 | | ĺ | | (C-109) | | | | | | | | | | | | (C-111) | | | i | | | | | | | Peleted 9/96 | | (C-112) | | | | | | | i | | | Penetian aran | -14 | (BY-103)
(BY-104) | | | - 1 | | | -12 | | | | | | (BY-105) | | | | : | | J | | | | | | (BY-106) | | | - | | | l | - | | | | | (BY-107) | | | | | | | | | | | | (BY-108) | 1 | | | | | ı | | | | | | (BY-110) | | | i | | | | | | | | | (BY-111) | | | | | 200 | | | | | | | (BY-112)
(T-107) | İ | | | | 11.7 | | - 1 | | | | | (TX-118) | | | | | | - 1 | | | | 1 | | (TY-101) | | | ĺ | | | İ | - 1 | |
 | | (TY-103) | | | | | | | ı | | | 1 | | (TY-104) | | | ł | | | - 1 | | | | eleted 12/98 | | | | 18 | (A-101) | | 100 | -10 | - 1 | | | | | Ī | Ī | | (AX-102) | | 2.00 | 1 | | | | | | | | | (B-103)
(S-102) | | | - 1 | | | | i | | | | | (S-111) | | | | ł | | | | | 1 | | | (SX-103) | | | | - 1 | | | | | ľ | İ | | (SX-106) | | | | | | | | | l | | | (T-111) | | | - 1 | | | | İ | | | | | (TX-105) | | | | 1 | | | | | Į | 1 | | (TX-118) | - | 1 | | J | | | | | ľ | | | (TY-104)
(U-103) | | | | 1 | | | ļ | | | | | (U-105) | i | | - [| - 1 | | | | | ļ | | | (U-106) | | | | - 1 | | | | | | 1 | | (U-107) | | 1 | | - 1 | | | 1 | | | Ì | | (U-111) |] | | ł | | | | | | | | | 411 2021 | l l | 148 | | - 1 | | | | | J | | | (U-203) | | | | - 1 | | | | | ł | | | (U-204) | | | | | | ⁽¹⁾ Eighteen of the 20 tanks were removed from the Organics Watch List in December 1998: eight of the tanks removed from the Organics List are also on the Hydrogen Watch List; therefore, the total tanks added/deleted depends upon whether a tank is also on another list. See table A-1 for current Watch List Tanks. ## TABLE A-4. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 1 of 6) November 30, 1999 The following table indicates whether Single-Shell tank monitoring was in compliance with the requirements as specified in the applicable documents as of the last day of the applicable month: ### NOTE: All Watch List and High Heat tank temperature monitoring is in compliance. (4) All Dome Elevation Survey monitoring is in compliance, with exception (see footnote 11). All Psychrometrics monitoring is in compliance (2). Drywell monitoring no longer required (5). In-tank photos/videos are taken "as needed" | LEGEND: | = in compliance with all applicable documentation | |------------------|--| | N/C | = noncompliance with applicable documentation | | O/S | = Out of Service | | Neutron | ≈ LOW readings taken by Neutron probe | | POP | = Plant Operating Procedure, TO-040-650 | | MT/FIC/
ENRAF | Surface level measurement devices | | OSD | = Operating Spec. Doc., OST-T-151-00013, 00030, 00031 | | N/A | = Not applicable (not monitored, or no monitoring schedule) | | None | = Applicable equipment not installed | | FSAR/TSR | = Final Safety Analysis Report/Technical Safety Requirements | | | Tank Catego | | Tank Category Temperature Leak | | Surfa | LOW
Readings | | | |--------|---|-----------------------|--------------------------------|------------|-------------------------------------|-----------------|--|--------------------| | Tank | Watch | High | Readings | Detection | 1 | (OSD) | (OSD)(5,7) | | | Number | List | Heat | (4) | Source (5) | MT | FIC | ENRAF | Neutron | | A-101 | X | alphy ble | | LOW | None | None | | | | A-102 | | | | None | None | | None . | None | | A-103 | | | | LOW | None | None | j rosti i sarot ki pakliki dikiriki in i | | | A-104 | | | | None | None | None | | None | | A-105 | | | | None | | None | None | None | | A-106 | ijage is Strike | | Garage and Artist Co. | None | None | None | Ligging Annald Salada. | None | | AX-101 | X | | PROBLEM BURE PRESENT | LOW | None | , None | to Talishenija ogogljaja i i i i i i i i i i i i i i i i i i | (P) | | AX-102 | | | : Magazaga | None | None | None | i. ir placininga papagaga da (b). | None | | AX-103 | X 4 4 4 4 | old street | upa asersi yayuntuk | None | None | None III | i interior apportunitation | None | | AX-104 | STANDARD CO. | | Alfons Para Addition | None | None | None . | | None | | B-101 | a uji candhua | Albumpings applica | ign constability | None | None | | Normal Company of the | None | | B-102 | | | | ENRAF | None | None | | None | | B-103 | | | | None | None | | None | D/S | | 8-104 | | | | LOW | | None | None | | | B-106 | a di ila di dalah | tratic design | CONTRACTOR | LOW | | None | None | MASSACTOR CARCAGOS | | B-106 | | | Transact Children | FIC | h None | Control (1976) | None in the | None (| | B-107 | SENCE ASSOCIATION | ENGLISHED B | | None | Aristupelalaiteatas | None | None | None : | | B-106 | | . [1] [n] [n] [1] [1] | | None | None | | None None | Mone 14100 | | B-109 | | | | None | | None | None | None | | B-110 | | | | LOW | | None | None | | | B-111 | | | | LOW | None | | None | | | B-112 | abiyi ke antika dijib t | isk filminisky. | orida e Para de presidente | ENRAF | None | in None | | de la Hone | | B-201 | SPA SESSE | . Physical acti | 14,145 (4,515) (6,600) | MT | acudi cudalia satu et et | . None | None | None | | B-202 | e da Rendu per profer | 18309966666633 | Tales having payangana | MT | . North Steel Gallery Servey (1915) | None | None None | | | B-203 | | HERE WELLS | | MT | | None 1 | None to the | None : | | B-204 | ovija se silanah | deligation deliga | | MT | | None | None | None | | BX-101 | | | | ENRAF | None | None | | None | | BX-102 | 11.00 (4.1) (1.1) (1.0) | 10000000 | | None | None | None | | None | | BX-103 | 1 | | | ENRAF | None | None : | | None | | BX-104 | DECEMBER 1 | | None | ENRAF | None | None | | None | | BX-105 | | | i diki dipingan dag | None | None | . None | | None | | BX-106 | a market in the | THE STREET | Paraking special | ENRAF | None | None ra | saint ar ar aid buyer, brainniais | None | | BX-107 | | | | ENRAF | None | None | er allem te de transferent de l'entre transference de l' | None | TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 2 of 6) | Tank Number List High Readings | Primary
Leak | Surface Level Readings (1) | | |--|-------------------------
--|--| | BX-108 BX-109 BX-110 BX-111 BX-111 BY-102 BY-103 BY-108 BY-106 BY-107 BY-108 BY-110 BY-110 BY-111 BY-111 BY-111 BY-112 C-101 C-102 C-103 X C-104 C-104 C-106 C-108 C-107 C-108 C-109 C-110 C-111 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-106 S-106 S-106 S-106 S-106 S-108 S-108 S-109 S-110 SX-104 SX-105 SX-102 SX-101 SX-102 SX-101 SX-102 SX-103 SX-104 SX-106 SX-108 SX-103 SX-104 SX-106 SX-103 SX-104 SX-106 SX-103 SX-104 SX-105 SX-103 SX-104 SX-106 SX-107 SX-108 SX-109 SX-109 SX-109 SX-109 SX-100 | Detection
Source (5) | (OSD) | (OSD)(5,7) NRAF Neutron | | BX-109 BX-110 BX-111 BX-112 BY-103 BY-104 BY-106 BY-107 BY-108 BY-107 BY-108 BY-111 BY-111 BY-112 C-101 C-102 C-102 C-103 C-104 C-105 C-106 C-106 C-106 C-107 C-108 C-109 C-110 C-111 C-111 C-111 C-111 C-111 C-111 C-111 S-112 C-201 C-202 C-203 C-204 S-100 S-110 S-11 | None | | | | BX-110 BX-111 BX-112 BY-101 BY-102 BY-103 BY-104 BY-106 BY-107 BY-108 BY-109 BY-110 BY-110 BY-111 BY-111 BY-111 BY-111 BY-111 BY-111 C-103 C-104 C-105 C-106 C-106 C-106 C-108 C-109 C-110 C-111 C-111 C-111 C-111 C-201 C-202 C-203 C-204 C-203 C-204 C-205 S-100 S-100 S-100 S-100 S-100 S-100 S-100 S-100 S-100 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-109 S-110 | None | Annual Control of the | None 1 | | BX-111 BX-112 BY-101 BY-102 BY-103 BY-104 BY-106 BY-106 BY-107 BY-107 BY-110 BY-111 BY-111 BY-111 BY-111 BY-112 C-101 C-102 C-103 C-104 C-106 C-106 C-108 C-109 C-107 C-108 C-109 C-110 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-107 S-108 S-109 S-109 S-109 S-101 S-102 S-103 S-104 S-105 S-108 S-107 S-108 S-107 S-108 S-109 S- | None | NAMES OF TAXABLE PROPERTY | engangga pangganaran
Managanggan | | BX-112 BY-101 BY-102 BY-103 BY-106 BY-106 BY-107 BY-108 BY-107 BY-109 BY-110 BY-111 BY-112 C-101 C-102 C-103 C-104 C-105 C-106 C-106 C-106 C-107 C-108 C-107 C-108 C-101 C-111 C-112 C-201 C-202 C-203 C-204 S-5101 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-106 S-107 S-108 S-108 S-108 S-109 S-111 X S-112 X SX-101 X SX-102 X X X X X X X X X X X X X X X X X X X | LOW | | | | BY-101 BY-102 BY-103 BY-104 BY-106 BY-106 BY-108 BY-107 BY-108 BY-110 BY-110 BY-110 BY-111 BY-111 BY-112 C-101 C-102 C-103 C-104 C-105 C-106 C-106 C-106 C-107 C-108 C-107 C-108 C-107 C-108 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-106 S-107 S-108 S-106 S-107 S-108 S-108 S-109 S-108 S-109 S-1 | ENRAF | None | None | | BY-102 BY-103 BY-104 BY-106 BY-107 BY-108 BY-109 BY-110 BY-110 BY-111 C-102 C-103 C-104 C-105 C-106 C-106 C-108 C-109 C-110 C-111 C-111 C-111 C-201 C-202 C-203 C-204 S-101 S-105 S-106 S-106 S-106 S-107 S-108 S-106 S-107 S-108 S-108 S-106 S-108 S-107 S-108 S-108 S-108 S-109 S-110 S-111 XX SX XX | LOW | Participation of the second | None | | BY-104 BY-106 BY-107 BY-107 BY-108 BY-109 BY-110 BY-111 BY-112 C-101 C-102 C-103 C-104 C-104 C-105 C-106 C-106 C-107 C-108 C-109 C-110 C-111 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-106 S-107 S-108 S-107 S-108 S-108 S-107 S-108 S-108 S-109 S-110 S-111 X S-108 S-109 S-110 S-111 X S-108 S-109 S-110 S-111 X S-108 S-108 S-109 S-110 S-111 X S-108 S-108 S-109 S-110 S-111 X S-109 S-110 S-111 X S-112 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-10 | LOW | | None | | BY-106 BY-106 BY-107 BY-108 BY-109 BY-110 BY-111 BY-111 BY-111 BY-112 C-101 C-102 C-103 C-103 C-104 C-105 C-106 C-106 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-104 S-105 S-106 S-106 S-106 S-107 S-108 S-104 S-107 S-108 S-110 S-111 S-112 S-111 S-112 S-110 S-111 S-112 S-110 S-110 S-110 S-110 S-111 S-112 S-108 S-108 S-110 S-110 S-111 S-112 S-110 S-111 S-112 S-110 S-111 S-112 S-110 S-110 S-111 S-112 S-110 S-110 S-111 S-112 S-110 S-111 S-112 S-110 S-110 S-110 S-110 S-111 S-112 S-110 S-110 S-110 S-110 S-111 S-112 S-110 S-110 S-110 S-111 S-112 S-112 S-110 S- | LOW | enancement programme interests and an experience of the control | Contract Description of the Contract Co | | BY-106 BY-107 BY-108 BY-109 BY-110 BY-111 BY-111 BY-112 C-101 C-102 C-103 C-104 C-105 C-106 C-106 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-106 S-107 S-108 S-108 S-108 S-108 S-108 S-109 S-110 S-111 S-112 S-108 S-108 S-109 S-109 S-110 S-101 S-102 S-103 S-104 S-105 S-108 S-108 S-109 S-109 S-109 S-101 S-108 S-108 S-109 S-10 | LOW | Control of the Contro | okipadekiski kulik je toske kinju.
None | | BY-108 BY-109 BY-110 BY-111 BY-111 C-102 C-103 C-104 C-105 C-106 C-106 C-108 C-109 C-110 C-111 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-106 S-106 S-106 S-107 S-108 S-106 S-107 S-108 S-108 S-108 S-109 S-110 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-109 S-110 S-111 S-112 S-112 S-110 S-111 S-112 S-111 S-112 S-111 S-112 S-111 S-112 S-111 S-112 S-110 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-109 S-110 S-111 S-112 S-112 S-111 S-112 S-111 S-112 S-111 S-112 S-110 S-110 S-110 S-111 S-111 S-111 S-111 S-112 S-110 S-110 S-110 S-110 S-110 S-110 S-110 S-111 S-111 S-112 S-111 S-112 S-110 S | LOW | SECURIORISTICS OF SECURIORIST | None is a large season and a large | | BY-107 BY-108 BY-109 BY-110 BY-111 BY-112 C-101 C-102 C-103 X C-104 C-105 C-106 (3) C-107 C-108 C-109 C-110 C-111 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-107 S-108 S-108 S-107 S-108 S-109 S-110 S-111 S-112 S-111 S-112 S-110 S-111 | LOW | reaction in the contract of th | None is a large service and the | | BY-108 BY-109 BY-110 BY-111 BY-111 BY-112 C-101 C-102 C-103 C-104 C-105 C-106 C-108 C-109 C-110 C-111 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-107 S-108 S-108 S-107 S-108 S-108 S-107 S-108 S-110 S-111 X S-111 X S-111 S-111 X S-111 S-111 X S-111 S-111 X S-110 S-111 X S-111 S-1110 | LOW | | None | | BY-110 BY-111 BY-111 BY-112 C-101 C-102 C-103 C-104 C-105 C-106 C-106 C-107 C-108
C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-104 S-106 S-106 S-106 S-107 S-108 S-110 S-111 X S-112 X S-103 S-110 S-111 X S-111 X S-112 X S-101 S-102 X S-103 S-110 S-111 X S-111 X S-111 X S-112 S-110 S-111 X S-112 S-110 S-110 S-111 X S-112 S-110 S-110 S-111 X S-111 X S-112 S-110 S-111 X S-112 S-110 S-110 S-111 X S-111 S-112 S-110 S-110 S-111 X S-110 S-111 X S-111 S-111 X S-110 S-110 S-111 X S-110 S-110 S-111 X S-1110 | None | | None None | | BY-110 BY-111 BY-112 C-101 C-102 X X C-103 X C-104 C-105 C-106 (3) C-108 C-109 C-110 C-111 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-104 S-106 S-106 S-107 S-108 S-108 S-108 S-110 S-111 X S-111 X S-112 X S-108 S-110 S-111 X S-111 X S-111 X S-111 X S-111 X S-112 SX-103 SX-104 SX-105 X SX-104 SX-105 SX-103 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-107 SX-108 SX-108 SX-109 SX-101 SX-102 SX-103 SX-104 SX-105 SX-103 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-101 SX-102 SX-103 SX-104 SX-105 SX-103 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-1 | LOW | | None None | | BY-111 BY-112 C-101 C-102 C-103 C-104 C-105 C-106 (3) C-107 C-108 C-109 C-110 C-111 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-104 S-105 S-106 S-107 S-108 S-108 S-108 S-108 S-108 S-109 S-111 S-112 X S-111 X S-112 X SX-101 SX-102 SX-103 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-101 SX-102 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-106 SX-107 SX-108 SX-109 SX-1 | LOW | None None | | | BY-112 C-101 C-102 X C-103 X C-104 C-105 C-106 (3) C-107 C-108 C-109 C-110 C-111 C-111 C-111 C-111 C-111 C-111 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-108 S-106 S-107 S-108 S-108 S-109 S-110 S-111 X S-108 S-109 S-110 S-111 X S-108 S-110 S-111 X S-108 S-1108 S-1109 S-1111 X S-1111 X S-1121 X S-1111 S-1122 X S-1104 S-1105 S-1111 S-1123 S-1104 S-1105 S-1108 S-1108 S-1108 S-1108 S-1108 S-1109 S-1108 S-1109 | LOW | None | | | C-101 C-102 C-103 C-104 C-105 C-106 (3) C-107 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-110 S-111 X S-112 X S-110 S-111 X S-112 SX-101 SX-102 SX-103 SX-104 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX | LOW | | | | C-102 C-103 X C-104 C-105 C-106 (3) C-107 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-106 S-106 S-107 S-108 S-108 S-108 S-110 S-111 X S-112 X S-110 S-111 X S-112 X S-110 S-111 X S-112 X S-110 S-111 X S-112 X S-103 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-1 | None | | | | C-104 C-105 C-106 (3) C-107 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-104 S-105 S-106 S-106 S-107 S-108 S-108 S-109 S-110 S-111 X S-112 X X SX SX-104 SX-105 SX-105 SX-106 SX-107 SX-108 SX-109 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-109 SX-100 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-109 SX-109 SX-100 SX-101 SX-102 SX-103 SX-104 SX-105 | None | | | | C-104 C-105 C-106 (3) C-107 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-106 S-107 S-108 S-108 S-109 S-110 S-111 X S-112 X X SX-104 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-101 SX-102 SX-103 SX-104 SX-105 SX-106 SX-107 SX-108 SX-109 SX-109 SX-100 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 SX-106 SX-107 SX-108 SX-109 SX-109 SX-100 SX-101 SX-102 SX-103 SX-104 SX-104 SX-105 | ENRAF | der der man in der | and the residence process of the contract of the | | C-106 (3) C-107 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-109 S-110 S-111 S-112 SX-101 SX-102 SX-101 SX-102 SX-101 SX-102 SX-103 SX-104 SX-104 SX-105 SX-106 SX-107 SX-108 SX-109 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-109 SX-109 SX-100 SX-101 SX-102 SX-103 SX-104 SX-105 SX-104 SX-105 | None | | | | C-106 (3) C-107 C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-106 S-106 S-107 S-108 S-108 S-109 S-110 S-111 X S-112 X X X X X X X X X X X X X X X X X X | None | | None | | C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-106 S-106 S-107 S-108 S-108 S-109 S-110 S-111 X S-112 X X X-104 SX-103 X X-104 SX-104 SX-105 | ENRAF | entities in real general retrainment de la faction de la company de la company de la company de la company de | | | C-108 C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-106 S-106 S-107 S-108 S-108 S-110 S-111 X S-112 X SX-101 X SX-104 SX-105 X SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 | ENRAF | | None | | C-109 C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-109 S-110 S-111 X S-112 X X SX-101 SX-102 X SX-103 SX-104 SX-103 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-105 SX-104 SX-105 | None | | helijiji i e None iji i i | | C-110 C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-108 S-110 S-111 X S-112 X X X-104 SX-103 X X-104 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-105 SX-106 SX-107 SX-108 SX-108 SX-109 SX-101 SX-102 SX-103 SX-104 SX-104 SX-105 | None | | lane | | C-111 C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-109 S-110 S-111 X S-112 X SX-101 SX-102 X SX-101 SX-102 SX-103 SX-104 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 | MT | | lone None | | C-112 C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-109 S-110 S-111 X S-112 X SX-101 SX-102 X SX-103 SX-104 SX-104 SX-105 SX-104 SX-105 SX-104 SX-105 | None | | Yone None | | C-201 C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-109 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-104 SX-103 SX-104 SX-104 SX-105 | None | economic management of the control of the control of the control of the control of | lone None | | C-202 C-203 C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-109 S-110 S-111 X S-112 X X X-101 X X X X-104 SX-103 X X X X X X X X X X X X X X X X X X X | None | estimates and the second of | None | | C-204 S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-109 S-110 S-111 S-112 SX-101 SX-102 SX-101 SX-102 SX-103 SX-104 SX-104 SX-104 SX-105 | None | None in the later of | and the state of t | | C-204 S-101 S-102 X S-103 S-104 S-105 S-106 S-107 S-108 S-109 S-110 S-111 X S-112 X SX-101 SX-102 X SX-103 SX-104 SX-103 SX-104 SX-104 SX-105 | None | | ione None | | S-101 S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-109 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 SX-104 SX-104 SX-105 | | and the control of th | ione None None | | S-102 S-103 S-104 S-105 S-106 S-107 S-108 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 SX-104 SX-104 SX-106 | None
ENRAF | | lone None | | S-103 S-104 S-105 S-106 S-107 S-108 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 X SX-104 SX-104 SX-105 | ENRAF | | Marie (1991) (1) (1) (1) (1) (1) (1) (1) (1) (1) (| | S-104 S-105 S-106 S-107 S-108 S-108 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 X SX-104 X SX-104 X SX-106 | ENRAF | | | | S-105 S-106 S-107 S-108 S-108 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 X SX-104 X SX-106 | LOW | | | | S-106 S-107 S-108 S-108 S-110 S-111 X S-112 SX-101 SX-102 X SX-103 X SX-104 X SX-104 X SX-106 | LOW | | | | S-107 S-108 S-109 S-110 S-111 X S-112 SX-101 SX-102 X SX-103 X SX-104 X SX-106 | ENRAF | personal and the second control of secon | iden jaki kili ka 1868 (1969) ji nji njisha keta res | | S-108 S-108 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 X SX-104 X SX-106 | ENRAF | | dictionalistic existing the married con- | | S-108 S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 X SX-104 X SX-106 | LOW | determinativity in the control of th | grafijana. Paren None jarras | | S-110 S-111 X S-112 X SX-101 X SX-102 X SX-103 X SX-104 X SX-106 X SX-106 | | | d National and Maria Andrews (1964) and a state of the st | | S-111 | LOW | | GARGE PROPERTY CONTRACTOR CONTRAC | | S-112 SX-101 SX-102 X SX-103 X SX-104 SX-104 SX-106 | | | | | SX-101
SX-102
SX-103
SX-104
SX-104
SX-106 | | | agus s | | 5X-102
5X-103
5X-104
5X-106
5X-106 | LOW | | | | 5X-103 X X X X X X X X X X X X X X X X X X X | LOW | | nadajur iliga a todaju o popaljija knodelj | | SX-104 X X SX-105 X SX-105 X X SX-105 X X X SX-105 X X X SX-105 X X X X X X X X X X X X X X X X X X X | LOW | | nga glavina karang sagaran karang karang ba | | 5X-105 | LOW | | | | | LOW | | i en 1816 a 2017 de la prima de la Colonia d | | ■ 2017年の1918年の大学園 1917年の開発に対する。
1917年の1918年の1 | | | | | | ENRAF | | | | SX-107 X | None None | | None None | TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 3 of 6) | | Tank C | Tank Category | | Primary Temperature Leak | | Surface Level Readings (1) | | | | | |----------------|--|--|---|--------------------------|-----------|--|---|--|--|--| | Tank | Watch High | | Readings | Detection | | Readings
(OSD)(5,7) | | | | | | Number | List | Heat | (4) | Source (5) | MT | (OSD) | ENRAF | Neutron | | | | SX-109 | | A CONTRACTOR | | None | None | None | i da e a esta de la composición de la composición de la composición de la composición de la composición de la c | None all a | | | | SX-110 | | X | - ACAGAMATA SANGGA | None | None | None : | | None | | | | SX-111 | | A CARLO | NEW COMPANY FROM | None | None | None | Janasa i in | None | | | | SX-112 | | X | | None | None | None | 1000 1100 1100 1100 | None | | | | SX-113 | | | | None | None | None | | None | | | | SX-114 | | X | | None | None | None | e de Composite dos sobre | Norm | | | | SX-115 | | in appropriately | Hone | None | None | None | i fari ya kalenda da 18. sek | None | | | | T-101 | | and adjust a plant of the | | None | None | Hors | History of the second state | None | | | | T-102 | | | None | ENRAF | None | None | | None = | | | | T-103 | 140 | | | None | None | North | | None | | | | T-104 | | | | LOW | None | None | Principle restaure a princip | | | | | T-105 | | | None | None | None | Norw | | None | | | | T-106 | r weighten die bei | SE SANGERS | | None | None | None . | ditalogia (SSS) | None | | | | T-107 | | planting and the | | ENRAF_ | None | None | | None | | | | T-108 | Sign Configuration (III) | gakyid Digaleksi i. | | ENRAF | None | None | a de la companya | None : | | | | T-109 | er de Comprés de la case | enti salabija entimpeta | adabaha bahasa bahada | None | Mone None | None | a Paragulatera | None : | | | | T-110 | | | | LOW | None | Norte (| | | | | | T-111 | | | | LOW | Home | None | | | | | | T-112 | | | | ENRAF | None | None | | None | | | | T-201
T-202 | | | | MT | | None | None | None | | | | T-202 | | Ricing the perturb | 44.453.00046.30448 | MT_ | | None | None | None | | | | T-203 | | | | None | | None | None | None | | | | TX-101 | | | | MT
ENRAF | | None | None ! | None ii | | | | TX-101 | | | None | LOW | None None | None | | None | | | | TX-102 | | | | | None None | Name 1 | | | | | | TX-103 | | | | None
None | None | None
None | and Seke Blue Sebas.
National and Security of | None
None | | | | TX-104 | | | | None | None | None Name | | None (8) | | | | TX-106 | | | | LOW | None | None | | | | | | TX-107 | | | | None | None | - Sione | | None | | | | TX-108 | | | | None | None | None | | None | | | | TX-109 | s vojeka ki si sepaktejek k | Sesesiva Pracació | | LOW | None | None | s ingula sa sa sa sagat sa sasa | | | | | TX-110 | | | None | LOW | None | None | | | | | | TX-111 | | | | LOW | None | None | arat ini araway | | | | | TX-112 | 4-10011634444 | | | LOW | None | None | | | | | | TX-113 | | | | LOW | None | None | | | | | | TX-114 | | | None | LOW | None | None | | | | | | TX-115 | 16.000 | | | LOW | None | None | in seal district | Nastalia katan da ka | | | | TX-116 | 1404112388043848 | 6235494666333 | None | None | None | . None | | None | | | | TX-117 | Mad Divinist as its | | None | LOW | None 1 | None | Markett Carlotte | | | | | TX-118 | tributation (| . Sur Phalaphysia (1 | | LOW | None | None III | | | | | | TY-101 | J. N. H. S. H. B. L. S. F. F. | ing and speciments |
0.0000000000000000000000000000000000000 | None | None | | | None alla | | | | TY-102 | | ration and a second | | ENRAF | None | | | None | | | | TY-103 | | | | LOW | None | a Miles was a reconstruction and a supplied and the supplied and a supplied and the supplie | | | | | | TY-104 | | | | ENRAF | None | None | | None | | | | TY-105 | | | | None | Horse | Nore | | None | | | | TY-106 | | | | None | None | None | | Norte | | | | U-101 | | | | МТ | | None | None | None | | | | U-102 | 100
100
100
100
100
100
100
100
100
100 | | | LOW | None | None | | i Brigation Police | | | | U-103 | Hall AX big | ta de la composition de la composition de la composition de la composition de la composition de la composition | | ENRAF | None | None | | | | | | U-104 | | | None | None | | None | None | None | | | | U-105 | X | | | ENRAF | None - | | material actual to a first the state of | add dd gallai galla. | | | | U-106 | | | | ENRAF | None | None | A Company | September - April | | | TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS 149 TANKS (Sheet 4 of 6) | | Tank Category | | Primary Temperature Leak | | Surfa | LOW
Readings | | | |---------------------------|------------------------------|-------------------------------|---|--|----------------------------|--|---|---------------------| | Tank
Number | Watch High | | Readings | Detection | | (OSD)(5,7) | | | | | List | Heat | (4) | Source (5) | MT | FIC | ENRAF | Neutron | | U-107 | andere K antang | | diski de diskubi, jeda | ENRAF | None . | None | an constant and the t | | | U-108 | X | | | LOW | None | None | | engalikus, meningga | | U-109 | X | | BARRAGE PER CALCULATION | ENRAF | None | None | N 111111 100 100 1 | AND VILLEY SERVICE | | U-1.10 | | | | None | None | None | | None | | U-111 | | All Substantial | | LOW | None | None | | | | U-112 | | | Tallians is social. | None | | None | None | None | | U-201 | | | Saling Lebender | MT | ik lika jako kalendara | . None | None (1) | None se | | U-202 | | | | MT | -articles at the | None | None | None . | | U-203 | | (00) 100 (4,600 | | None | None | None | Section of the second | None | | U-204 | | | | ENRAF | None | None | | None | | Catch Tanks a | ed Seesial Su | - Hissas Es | -ilitiaa | | | | | | | A-302-A | NO SPECIAL SU | N/A | CHIU09 | (61 | Norte | None | an a he callegeration | None | | A-302-B | N/A | N/A | N/A | (6) | | None | None | None | | ER-311 | | N/A | N/A | (6) | None | N/C (10) | None | None | | AX-152 | SWOODEL TO A CHARGE TO | N/A | N/A | (6) | 100 | None | None | None | | AZ-151 | | N/A | | Selection 18 to 2 Common Little | None | | Nore | None | | | N/A N/A | N/A | N/A | | | None | | None | | AZ-164 | | N/A | | (8)
(8) | | | | None | | BX-TK/SMP
A-244 TK/SMP | N/A | N/A | | (8) | None 25 | None None | None None | None | | | Charles of the best section. | | | REPORTED BY A CHREST CONTROL | None in the | NOS | transference and transference | | | AR-204 | N/A | N/A | N/A
N/A | (6) | | | None | None | | A-417
A-350 | | SEE N/A | | (a) | None | None None | | None None | | CR-003 | | | | (6) | None None | | | | | | N/A | . N/A | N/A | (0) | None | None | None and | None | | Vent Sta.
244-S TK/SMP | N/A | N/A | is said N/Assassas
Acasas N/Assassas | inite par (6) particular. | anda Nonette | None : | None | None None | | | | | | BANCOMOS RESIDENCIAS ACADEMA ROS ROS RES | 19111-991-041-241-1 | 6.00 | 100000000000000000000000000000000000000 | | | 5-302 | N/A | agradaN/Ajudaja
muasara (A | Section (SN/A) Sections | (6) (14) | None None | None None | e Majorinto periodo profile efecte.
O Majorinto periodo de Majorinto | None None | | S-304 | | N/A | N/A | 40 | North | | None | | | TX-244 TK/SMP | N/A
N/A | N/A
N/A | N/A | (6) | | | | None | | TX-302-B | N/A
N/A | N/A | N/A
N/A | (0) | None | None
None | None | None | | TX-302-C | | | | (6) | Statement was a second one | Account to the second s | | None | | U-301-B | N/A | N/A | N/A | (6) | None | None | | None | | UX-302-A | N/A | N/A | (Algorithm N/A | (6) | None | None A | tin orași pi de din din di | None | | S-141
S-142 | NA NA | N/A (1) | N/A | (6) | 0/6 | None | None None | None None | | Totels: | 22 | 9 | N/C: O | | N/C: 0 | N/C: O | N/C: O | N/C: O | | i otele. | | , , | | |] | 1 | "" | 1170. 0 | | 149 tanks | Watch | i
High | | | ł | | | | | 1-20 falles | List | Heat | | | | | [| | | Í | Tanks | Tenks | j i | | | } | | | | | (4) | (4) | i l | | | İ | 1 | | ## TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS -149 TANKS (Sheet 5 of 6) #### Footnotes: - 1. All SSTs have either manual tape, FIC, or ENRAF surface level measuring devices. Some also have zip cords. - ENRAF gauges are being installed to replace FICs (or sometimes manual tapes). The ENRAF gauges are being connected to TMACS, but many are currently being read manually from the field. See Table A-7 for list of ENRAF installations. - 2. High heat tanks have active exhausters; psychrometrics can be taken in the high heat tanks. Psychrometric readings are taken on an "as needed" basis with the exception of tanks C-105 and C-106. Hanford Federal Facility Agreement and Consent Order," Washington State Department of Ecology, U. S. Environmental Protection Agency, and U. S. Department of Energy," Fourth Amendment 1994 (Tri-Party Agreement) requires psychrometric readings to be taken in C-105 and C-106 on a monthly frequency. Also, SX-farm now has psychrometrics taken monthly. - 3. C-106 is the only tank on the high heat load list included on the High Heat Watch List. In September 1999 a request was made to DOE-HQ to remove tank C-106 from the High Heat Load Watch List. - 4. Temperature readings may be regulated by OSD, POP, or FSAR (FSAR only regulates high heat load tanks). Temperatures cannot be obtained in 13 low heat load tanks (see Table A-4). The OSD does not require readings or repair of out-of-service thermocouples for the low heat load (<40,000 Btu/h) tanks. However, the POP requires that attempts are to be made semiannually in January and July to obtain readings for these tanks. Temperatures in some tanks cannot be taken in the waste because the waste level is lower than the lowest thermocouple in these trees. Temperatures for many tanks are monitored continuously by TMACS; see Table A-8, TMACS Monitoring Status. - 5. Document OSD-T-151-00031, "Operating Specifications for Tank Farm Leak Detection," REV C-0, January 13, 1999, requires that single-shell tanks with the surface level measurement device contacting liquid, partial liquid, or floating crust surface, will be monitored for leak detection on a daily basis. Tanks with a solid surface will be monitored for leak detection on a weekly basis by taking neutron scan data from a Liquid Observation Well (LOW), if an LOW is present. Tanks with a solid surface but without LOWs will not be monitored for leak detection if the tank has been interim stabilized, until an LOW is installed. - This OSD revision does not require drywell surveys to be taken. (Drywell scans are being taken around C-106, as required by the Waste Retrieval Sluicing System, Spectral Gamma Waste Management). The OSD specifies what leak detection methods are to be used for each tank, and the requirements if the readings are not taken on the required frequency or if equipment is out of service. - 6. Leak detection for the catch tanks is performed by monitoring for the buildup of liquid in the secondary containment (for most tanks with secondary containment) or for decrease in the liquid level for those tanks without secondary containment or secondary containment monitoring. Catch tank 240-S-302 is monitored for intrusions only, and is not subject to leak detection monitoring requirements until
liquid is present above the intrusion level. Weight Factor is the surface level measuring device currently used in A-417, A-350, 244-A Tank/Sump, and 244-S Tank/Sump. DCRT CR-003 is inactive and measured in gallons. ## TABLE A-5. SINGLE-SHELL TANKS MONITORING COMPLIANCE STATUS - 149 TANKS (Sheet 6 of 6) 7. Document SD-WM-TI-605, REV. 0, dated January 1994, describes the rationale for Liquid Observation Well (LOW) installation priority. This priority is based on tank leak status, tank surface condition, and tank stabilization status. Also included is a listing of tanks with the waste level being below two feet which have no priority assigned because no effort will be made to install LOWs in the near future. LOW probes are unable to accurately monitor interstitial liquid levels less than two feet high. Tanks which will not receive LOWs: | A-102 | BX-101 | C-201 | T-106 | |--------|--------|--------|--------| | A-104 | BX-103 | C-202 | T-108 | | A-105 | BX-105 | C-203 | T-109 | | AX-102 | BX-106 | C-204 | TX-107 | | AX-104 | BX-108 | SX-110 | TY-102 | | B-102 | C-108 | SX-113 | TY-104 | | B-103 | C-109 | SX-115 | TY-106 | | B-112 | C-111 | T-102 | U-101 | | | | T-103 | U-112 | Total - 34 Tanks - 8. TX-105 the LOW was in riser 8; the riser has been removed and the LOW has not been monitored since January 1987. Liquid levels are being taken in riser 9 by ENRAF and recorded in TMACS. - 9. AX-101 LOW readings are taken by gamma sensors. - 10. Catch Tank ER-311 the FIC is out of service with no secondary containment monitoring. The primary device must be repaired or a valid reading obtained from an alternate device within 14 days (daily). The FIC was O/S on October 21, 1999; and due for repair on November 4. Discrepancy Report 99-863 was issued on November 4; Occurrence Report RP-LHMC-TANKFARM-1999-0010 was issued November 2, 1999. - 11. Tank TX-113 Dome elevation surveys are required to be performed as specified in OSD-T-151-00013. TX-113 has suspended airlift circulators and is required to have dome elevation surveys obtained from a minimum of two benchmarks every 12 months +/- 1 month. The last valid dome elevation survey was taken on July 16, 1998. This exceeds the dome elevation survey frequency specified in the OSD. Discrepancy Report 99-865 was issued on December 1, 1999. # TABLE A-5. DOUBLE-SHELL TANKS MONITORING COMPLIANCE STATUS 28 TANKS (Sheet 1 of 2) November 30, 1999 The following table indicates whether Double-Shell tank monitoring was in compliance with the requirements as specified in the applicable documents as of the last day of the applicable month. #### NOTE: Dome Elevation Surveys are not required for DSTs. Psychrometrics and in-tank photos/videos are taken "as needed" (2) LEGEND: (Shaded) = In compliance with all applicable documentation N/C = Noncompliance with applicable documentation FIC/ENRAF = Surface level measurement devices M.T. OSD = OSD-T-151-0007, OSD-T-151-00031 None ≈ no M.T., FIC or ENRAF installed 0/\$ = Out of Service W.F. = Weight Factor N/A = Not Applicable (not monitored or no monitoring schedule) Rød. = Radiation | | | ĺ | ļ | | | Re | diation Readings | 3 | |---------------------|---|--|--|--------------------------|---|-------------------------------|--------------------------|---| | Tank | | Temperature
Readings
(3) | Şurf | ace Level Read
(OSD) | lings (1) | Leak Detection Pits (4) (OSD) | | Annulus | | Number | Watch List (OSD) | | M.T. | FIC | ENRAF | W.F. | Rad. (6) | (OSD) | | AN-101 | | | Harriston (1901) | None | | | N/A | , Paragrafia | | AN-102 | | | 100 | | None | | N/A | | | AN-103 | X | | | None | | 2000 To 1800 | N/A | | | AN-104 | X | | OIS | None | | | NA. | 363 4140 4136 | | AN-106 | amateteres X agreed (d. | នគម្រាស់ មានស្វាស់ ម | O/S | None in the | i dia katang pagita tang ap | sign salagas da minas, | NA NA | della gentlekkis | | AN-106 | t di este Comangania de e | , fakált szepett falásák költét | Legicold i Book tobalis an i | rasıy şəfidətri ilir ili | None . | a salah dalah kaji | III. NA | e egypter i de fall | | AN-107 | | | | hardala i | None | 0/6 | MA. | | | AP-101 | | -4201680 (SEC.) (SEC.) | 210 | None | 191111111111111111111111111111111111111 | 0/8 (7) | N/A | | | AP-102 | right of the control of the control of | enter austrialität ja kaisen e | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | None | | 0/6 (7) | WA | TELEPOORT PROCE | | AP-103 | . J. 100 M. J. 1844 M. J. 1444 | | | None | | 0/5 (7) | N/A | tingid filik (d. 145 | | AP-104 | spiral company | | D/S | None | | 0/5 (7) | N/A | | | AP-105 | | ai ta dalam kiji da dalam k | Salata da Salata | Nene | | 0/5 (7) | , NA | i i i i i i i i i i i i i i i i i i i | | AP-106 | | | iae ganaka asasti | None | | 0/5 (7) | N/A | | | AP-107 | offendaugit i Destjone, 190 | ត្រូវបាន នៅក្រុមប្រជាជាក្រុមប្រជាជាក្រុមប្រជាជាក្រុមប្រជាជាក្រុមប្រជាជាក្រុមប្រជាជាក្រុមប្រជាជាក្រុមប្រជាជាក្រ | t gregorialente sa situa | n None | i dan Kabupatèn Patrakan da | D/6 (7) | i apage apa NVA escara a | and of participation | | AP-108 | THE POST CONSTRUCTION | | | None : | | 0/5 (7) | HEREN WARREN | elisasa en le | | AW-101 | sionidae Xaliotenia | | 0/6 | None | AND PRODUCTION OF THE | 0/5(7) | N/A INC. | JUNIO STAN | | AW-102 | | | | | (6) | | N/A | 2000
2000
2000
2000
2000
2000
2000
200 | | AW-103 | | | | None | | | WA | | | AW-104 | | | 0/5 | None | | | N/A | 0.546644670 | | AW-106 | | | | None | | | NA | | | AW-106 | | | Jag Baatta Ja | None | | | N/A see | Markillarib | | AY-101 | neje politik en bi laktion in sti | anders de la compressión de la desagración de la compressión de la compressión de la compressión de la compres | . Bajkal jihorkiya 25 aridir. | None | seedup de la Cajiese | O/8 | N/A | 0/6 | | AY-102 | | | | None | iska Pilipas papa (2018) shis | | NA | Heritag Hallar | | AZ-101 | | | 0/5 | None " | en ithribus base | saarde Woore | N/A | 0/8 | | AZ-102 | | | | | None | | NA . | O/S | | SY-101 | A. L. P. X. M. S. | trasperação Apagaisação | None | None | ja Childrig Albert | Salah Sebagah sa | NA. | a didu | | SY-102 | Contract Contract Care | | | None | | | N/A | | | SY-103 | X | | D/S | None | | O/B | MA | 100 | | Totals:
28 tanks | 6
Watch List Tanks | N/C: 0 | N/C: 0 | N/C: 0 | N/C: 0 | N/C: O | N/C: 0 | N/C: 0 | ## TABLE A-5. DOUBLE-SHELL TANKS MONITORING COMPLIANCE STATUS - 28 TANKS (Sheet 2 of 2) #### Footnotes: - 1. Some double-shell tanks have both FIC and manual tape which is used when the FIC is out of service. Noncompliance (N/C) will be shown when no readings are obtained. ENRAF gauges are being installed to replace FICs. The ENRAF gauges are being connected to TMACS, but some are currently being read manually. - 2. Psychrometric readings are taken on an "as needed" basis. No psychrometric readings are currently being taken in the double-shell tanks. - 3. OSD specifies double-shell tank temperature limits, gradients, etc. - Applicable OSD and HNF-IP-0842, latest revisions, are used as guidelines for monitoring Leak Detection Pits. 4. See also (6) and (7) below. - AW-102 has ENRAF, FIC and M.T. At some point the FIC will be removed. 5. - 6. USQ TF-97-0038, dated April 28, 1997, specifies discontinuing the use of leak detection pit radiation monitoring equipment in all double-shell tank farms where the leak detection pits are used as tertiary leak detection. This applies to all double-shell tank farms. - 7. Leak Detection Pit weekly readings are being obtained by Instrument Technicians in these tanks: AP-103C (for tanks AP-101 - 104) AP-105C (for tanks AP-105 - 108) ## TABLE A-6. ENRAF SURFACE LEVEL GAUGE INSTALLATION AND DATA INPUT METHODS November 30, 1999 LEGEND SACS = Surveillance Analysis Computer System TMACS = Tank Monitor and Control System Auto = Automatically entered into TMACS and electronically transmitted to SACS Manual - Manually entered directly into SACS by surveillance personnel, from Field Data sheets | ļ | | | | | <u> </u> | 8800 | | | | | | |-------------------|----------------|--------------|------------------|----------------|------------------|----------------|----------------|------------------|----------------|----------------|----------| | EAST | AREA | | | · | | WEST | AREA | | | | | | Tank | Installed | Input | Tank | Installed | Input | Tank | Installed | Input | Tank | Instailed | Input | | No. | Date | Method | No. | Date | Method | No. | Date | Method | No. | Date | Method | | A-101 | 09/95 | Auto | B-201 | | | S-101 | 02/95 | Auto | TX-101 | 11/95 | Auto | | A-102 | | \- <u>\-</u> | B-202 | <u> </u> | | S-102 | 05/95 | Auto | TX-102 | 05/96 | Auto | | A-103 | 07/96 | Auto | B-203 | | | S-103 | 05/94 | Auto | TX-103 | 12/95 | Auto | | A-104 | 05/96 | Manual | B-204 | | | S-104 | 05/99 | Auto | TX-104 | 03/96 | Auto | | A-105 | | | BX-101 | 04/96 | Auto | S-105 | 07/95 | Auto | TX-105 | 04/96 | Auto | | A-106 | 01/96 | Auto | BX-102 | 06/96 | Auto | S-108 | 06/94 | Auto | TX-106 | 04/96 | Auto | | AN-101 | 08/96 | Auto | BX-103 | 04/96 | Auto | S-107 | 06/94 | Auto | TX-107 | 04/96 | Auto | | AN-102 | 20/25 | <u> </u> | BX-104 | 05/96 | Auto | S-108 | 07/95 | Auto | TX-108 | 04/96 | Auto | | AN-103 | 08/95 | Auto | BX-105 | 03/96 | Auto | S-109 | 08/95 | Auto | TX-109 | 11/95 | Auto | | AN-104_
AN-105 | 08/95 | Auto | BX-106 | 07/94 | Auto | S-110 | OB/95 | Auto | TX-110 | 05/96 | Auto | | AN-106 | 06/95 | Auto | BX-107
BX-108 | 06/96
05/96 | Auto
Auto | S-111
S-112 | 08/94 | Auto | TX-111 | 05/96 | Auto | | AN-107 | | | BX-109 | 08/95 | Auto | SX-101 | 05/95
04/95 | Auto | TX-112 | 05/96 | Auto | | AP-101 | 06/99 | Auto | BX-110 | 06/96 | Auto | SX-101 | 04/95 | Auto | TX-113
 05/96
05/96 | Auto | | AP-102 | 08/99 | Auto | BX-111 | 05/96 | Auto | SX-102 | 04/95 | Auto | TX-115 | 05/96 | Auto | | AP-103 | 08/99 | Auto | BX-112 | 03/96 | Auto | SX-104 | 05/95 | Auto | TX-116 | 05/96 | Auto | | AP-104 | 07/99 | Auto | BY-101 | | | SX-105 | 05/95 | Auto | X TX-117 | 06/96 | Auto | | AP-105 | 08/99 | Auto | BY-102 | 09/99 | Manuel | SX-106 | 08/94 | Auto | TX-118 | 03/96 | Auto | | AP-106 | 08/99 | Auto | BY-103 | 12/96 | Manual | SX-107 | 09/99 | Auto | TY-101 | 07/95 | Auto | | AP-107 | 08/99 | Auto | BY-104 | | | SX-108 | 09/99 | Auto | TY-102 | 09/95 | Auto | | AP-108 | 08/99 | Auto | BY-105 | | | SX-109 | 09/98 | Auto | TY-103 | 09/95 | Auto | | AW-101 | 08/95 | Auto | BY-106 | | | SX-110 | 09/99 | Auto | TY-104 | 06/95 | Auto | | AW-102 | 05/96 | Auto | BY-107 | | | SX-111 | 09/99 | Auto | TY-105 | 12/95 | Auto | | AW-103 | 05/96 | Auto | BY-108 | | | SX-112 | 09/99 | Auto | TY-106 | 12/95 | Auto | | AW-104 | 01/96 | Auto | BY-109 | | | SX-113 | 09/99 | Auto | W-101 | | | | AW-105 | 06/96 | Auto | BY-110 | 02/97 | Manual | SX-114 | 09/99 | Auto | U-102 | 01/96 | Manual | | AW-106 | 06/96 | Auto | BY-111 | 02/99 | Manual | SX-115 | 09/99 | Menual | U-103 | 07/94 | Auto | | AX-101 | 09/95 | Auto | BY-112 | | | SY-101 | 07/94 | Auto | U-104 | <u> </u> | | | AX-102 | 09/98 | Auto | C-101 | | | SY-102 | 06/94 | Manual | U-105 | 07/94 | Auto | | AX-103 | 09/95 | Auto | C-102 | 00/04 | | SY-103 | 07/94 | Auto | U-106 | 08/94 | Auto | | AX-104 | 10/96 | Auto | C-103 | 08/94 | Auto | T-101 | 05/95 | Manual | U-107 | 08/94 | Auto | | AY-101
AY-102 | 03/96
01/98 | Auto
Auto | C-104
C-105 | 04/99
05/96 | Manual
Manual | T-102
T-103 | 06/94
07/95 | Auto | U-108 | 06/95 | Auto | | AZ-101 | 08/96 | Manual | C-106 | 02/96 | Auto | T-103 | 12/95 | Manual
Manual | U-109 | 07/94 | Auto | | AZ-101 | 00/90 | Manual | C-107 | 02/96 | Auto | T-105 | 07/95 | Manual | υ-110
U-111 | 01/96
01/96 | Manual | | B-101 | 1 | | C-107 | 04/80 | Auto | T-106 | 07/95 | Manual | U-112 | 01/96 | Manual | | B-102 | 02/95 | Manual | C-109 | | | T-107 | 06/94 | Auto | U-201 | | | | B-103 | | | C-110 | | | T-108 | 10/95 | Manual | U-202 | | | | B-104 | | | C-111 | | | T-109 | 09/94 | Manual | U-203 | 09/98 | Manual | | B-105 | | | C-112 | 03/96 | Manual | T-110 | 06/95 | Auto | U-204 | 06/98 | Manual | | B-106 | | | C-201 | | | T-111 | 07/95 | Manual | | | | | B-107 | [| | C-202 | | | T-112 | 09/95 | Manual | | t | | | B-108 | | | C-203 | | | T-201 | | | | | | | B-109 | | | C-204 | | | T-202 | | | | | | | B-110 | | | | | | T-203 | | | | | | | B-111 | | | | | | T-204 | | | | | | | B-112 | 03/95 | Menual | | | | | | | | | | | Total Fee | t Area: 53 | | | | | Total Wa | st Area: 77 | | | | <u> </u> | | | | | | | | | | | ******* | | | 130 ENRAFs installed: 103 automatically entered into TMACS, 27 manually entered into SACS ## TABLE A-7. TANK MONITOR AND CONTROL SYSTEM (TMACS) November 30, 1999 Note: Indicated below are the number of tanks having at least one operating sensor monitored by TMACS. Some tanks have more than one sensor: multiple sensors of the same type in a tank are not shown in the table (for example: 10 tanks in BY-Farm have at least one operating TC sensor and 3 tanks in BY Farm have at least one operating RTD sensor). Acceptance Testing Completed: Sensors Automatically Monitored by TMACS | | Tempera | Temperatures | | | | | |-----------------------|--------------|--------------|-------|----------|----------|--------| | | | Resistance | | | | | | EAST AREA | Thermocouple | Thermal | ENRAF | 1 | } | Gas | | | Tree | Device | Level | Pressure | Hydrogen | Sample | | Tank Farm | (TC) | (RTD) | Gauge | (b) | (c) | Flow | | A-Farm (6 Tanks) | 1 | | 3 | | 1 | 1 | | AN-Farm (7 Tanks) | 7 | | 4 | 7 | 3 | 3 | | AP-Farm (8 Tanks) | | | 8 | | | | | AW-Farm (6 Tanks) | 6 | | 6 | | 1 | 1 | | AX-Farm (4 Tanks) | 3 | | 4 | | 1 | | | AY-Farm (2 Tanks) | | | 2 | | | | | AZ-Farm (2 Tanks) | | | | | | | | B-Farm (16 Tanks) | 1 | | | | | | | BX-Farm (12 Tanks) | 11 | | 12 | | | | | BY-Farm (12 Tanks) | 10 | 3 | | | | | | C-Farm (16 Tanks) | 15 | 1 | 3 | 1 | | | | TOTAL EAST AREA | | | | | | | | (91 Tanks) | 54 | 4 | 42 | 8 | 6 | 5 | | WEST AREA | | İ | | | | | | S-Farm (12 Tanks) | 12 * | | 12* | 1 | 3 | 3 | | SX-Farm (15 Tanks) | 14* | | 14* | 1 | 7 | 7 | | SY-Farm (3 Tanks) (a) | 3 | | 2 | 1 | 2 | 2 | | T-Farm (16 Tanks) | 14 | ۱ | 3 | | 1 | 1_ | | TX-Farm (18 Tanks) | 13 | | 18 | | | | | TY-Farm (6 Tanks) | 6 | 3 | 6 | I | | | | U-Farm (16 Tanks) | 15 | | 6 | 4 | 6 | 6_ | | TOTAL WEST AREA | | | | | | | | (86 Tanks) | 77 | 4 | 61 | 7 | 19 | 19 | | TOTALS (177 Tanks) | 131 | 8 | 103 | 15 | 25 | 24 | ⁽a) Tank SY-101 has 2 gas sample flow sensors plus 2 vent flow sensors, and 2 ENRAFs. ⁽b) Each tank two sensors (high and low range). ⁽c) Each tank has two sensors (high and low range). ^(*) TMACS has been out of service since November 20, 1999, for the thermocouples and ENRAFs in S and SX tank farms. ## APPENDIX B ## DOUBLE SHELL TANK WASTE TYPE AND SPACE ALLOCATION Table B-1. Double Shell Tank Waste Inventory - November 30, 1999 (Sheet 2 of 2) | TOTAL AVAILABLE SPACE AS O | | | 12148 | | |--|--|---|---|---| | NATCH LIST TANK SPACE: | TANK | WASTE TYPE | AVAILABLE | SPACE | | Inusable DST Headspace - Due to Special Restrictions | AN-103 | DSS | 183 | KGALS | | Placed on the Tanks, as Stated in the "Wyden Bill" | AN-104 | | | KGALS | | | AN-105 | | | KGALS | | | AW-101 | | | KGALS | | | SY-101 | | | KGALS | | | SY-103 | The second control of | | KGALS | | | | TOTAL= | 652 | KGALS | | | | AVAILABLE TANK SPACE | 12148 | KGALS | | | Mil | NUS WATCH LIST SPACE= | -652 | KGALS | | TOTAL AVAILABLE SPACE AFTER W | ATCH LIST | SPACE DEDUCTIONS | 11496 | KGALS | | ESTRICTED TANK SPACE: | TANK | WASTE TYPE | AVAILABLE | SPACE | | ST Headspace Available to Store Only Specific Waste Ty | ypes | | | | | | AN-102 | CC | | KGALS | | | AN-107 | | = - | KGALS | | | AP-102 | | | KGALS | | | AZ-101 | | | KGALS | | | AZ-102 | All the second the second to the second the second to | | KGALS | | | | TOTAL= | 400 | KGALS | | | | | | | | AVAILABLE SPACE | E AFTER W | ATCH LIST DEDUCTIONS | 11496 | KGALS | | AVAILABLE SPACE | | ATCH LIST DEDUCTIONS
S RESTRICED SPACE= | | KGALS
KGALS | | AVAILABLE SPACE TOTAL AVAILABLE SPACE AFTER RES | MINU | S RESTRICED SPACE= | -400 | | | TOTAL AVAILABLE SPACE AFTER RE | MINU | S RESTRICED SPACE= | -400 | KGALS
KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated | MINU
STRICTED | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE | -400
11096
AVAILABLE | KGALS
KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated | MINU
STRICTED :
TANK | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN | -400
11096
AVAILABLE
980 | KGALS
KGALS
SPACE | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated | MINU
STRICTED :
TANK
AN-101 | S
RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC | -400
11096
AVAILABLE
980
1102 | KGALS
KGALS
SPACE
KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated | MINU
STRICTED:
TANK
AN-101
AN-106 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF | -400
11096
AVAILABLE
980
1102
25 | KGALS
KGALS
SPACE
KGALS
KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated | MINU
STRICTED:
TANK
AN-101
AN-106
AP-101 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC | -400
11096
AVAILABLE
980
1102
25
857 | KGALS
KGALS
SPACE
KGALS
KGALS
KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated | TANK AN-101 AN-106 AP-101 AP-103 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN | -400
11096
AVAILABLE
980
1102
25
857
1116 | KGALS SPACE KGALS KGALS KGALS KGALS KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated | TANK AN-101 AN-106 AP-101 AP-103 AP-104 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF | -400
11096
AVAILABLE
980
1102
25
857
1116
376 | KGALS SPACE KGALS KGALS KGALS KGALS KGALS KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated
and Evaporator Product Waste | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047 | KGALS KGALS KGALS KGALS KGALS KGALS KGALS KGALS | | TOTAL AVAILABLE SPACE AFTER RES
SABLE/WASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated
and Evaporator Product Waste | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN DN DN | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165 | KGALS KGALS KGALS KGALS KGALS KGALS KGALS KGALS KGALS | | TOTAL AVAILABLE SPACE AFTER RES SABLE/WASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN DN DN | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757 | KGALS KGALS KGALS KGALS KGALS KGALS KGALS KGALS KGALS | | TOTAL AVAILABLE SPACE AFTER RES SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN DN DN DN DN | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058 | KGALS | | TOTAL AVAILABLE SPACE AFTER RES SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN DN DN NCRW | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630 | KGALS | | TOTAL AVAILABLE SPACE AFTER RES SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630
22 | KGALS | | TOTAL AVAILABLE SPACE AFTER RES SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN DN DN DN DN NCRW DN NCRW | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630
22
711 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK | MINU
STRICTED:
TANK
AN-101
AN-106
AP-101
AP-103
AP-106
AP-106
AP-107
AP-108
AW-102
AW-103
AW-104
AW-104 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN DN DN DN DN DN DN D | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK | MINU:
STRICTED:
TANK
AN-101
AN-106
AP-101
AP-103
AP-106
AP-106
AP-107
AP-108
AW-102
AW-103
AW-104
AW-104
AW-105
AW-106 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN NCRW DN NCRW DSSF DC | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673
828 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK | MINU:
STRICTED:
TANK
AN-101
AN-106
AP-101
AP-103
AP-104
AP-105
AP-106
AP-107
AP-108
AW-108
AW-102
AW-103
AW-104
AW-105
AW-104 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN NCRW DN NCRW DN NCRW DSSF DC DN | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673
828
365 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK EVAPORATOR RECEIVER TANK FACILITY WASTE RECEIVER TANK | MINU:
STRICTED:
TANK
AN-101
AN-106
AP-101
AP-103
AP-106
AP-107
AP-108
AW-102
AW-103
AW-104
AW-105
AW-101
AW-105
AY-101
AY-102
SY-102 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN NCRW DN NCRW DN NCRW DSSF DC DN | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673
828
365
384 | KGALS | | SABLE/WASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK EVAPORATOR RECEIVER TANK FACILITY WASTE RECEIVER TANK TOTAL | MINU:
STRICTED:
TANK
AN-101
AN-106
AP-101
AP-103
AP-106
AP-107
AP-108
AW-102
AW-103
AW-104
AW-105
AW-101
AW-105
AY-101
AY-102
SY-102 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN NCRW DN NCRW DN NCRW DSSF DC DN DN DN DO NCRW DSSF DC DN DN DN DN DN DN DN DN DN | -400
11096
AVAILABLE
980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673
828
365
384 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK EVAPORATOR RECEIVER TANK FACILITY WASTE RECEIVER TANK | MINU:
STRICTED:
TANK
AN-101
AN-106
AP-101
AP-103
AP-106
AP-107
AP-108
AW-102
AW-103
AW-104
AW-105
AW-101
AW-105
AY-101
AY-102
SY-102 | S RESTRICED SPACE= SPACE DEDUCTIONS= WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN NCRW DN NCRW DN NCRW DSSF DC DN DN DN DO NCRW DSSF DC DN DN DN DN DN DN DN DN DN | -400 11096 AVAILABLE 980 1102 25 857 1116 376 1047 165 757 1058 630 22 711 673 828 365 384 11096 | KGALS | SEG1199 Table B-1. Double Shell Tank Waste Inventory - November 30, 1999 (Sheet 2 of 2) | | OF NOVEME | BER 30, 1999: | 12148 | KGALS | |---|---|--
--|---| | WATCH LIST TANK SPACE: | TANK | WASTE TYPE | AVAILABLE | SPACE | | Inusable DST Headspace - Due to Special Restrictions | AN-103 | | 183 | KGALS | | Placed on the Tanks, as Stated in the "Wyden Bill" | AN-104 | | | KGALS | | | AN-105 | | | KGALS | | | AW-101 | | | KGALS | | | SY-101 | | | KGALS | | | SY-103 | | | KGALS | | | | TOTAL* | 852 | KGAL5 | | | | AVAILABLE TANK SPACE | 12148 | KGALS | | TOTAL MANUSCON CONTRACTOR | | NUS WATCH LIST SPACE | a college and a construction of the contract o | KGALS | | TOTAL AVAILABLE SPACE AFTER W | VAICH LIST | SPACE DEDUCTIONS | 11496 | KGALS | | RESTRICTED TANK SPACE: | TANK | WASTE TYPE | AVAILABLE | SPACE | | OST Headspace Available to Store Only Specific Waste T | | 1000 | | | | | AN-102 | | | KGALS | | | AN-107 | · · | | KGALS | | | AP-102 | | | KGALS | | | AZ-101 | | | KGALS | | | AZ-102 | | | KGALS | | | | TOTAL= | 400 | KGALS | | AVAILABLE SPACI | E AFTER W | ATCH LIST DEDUCTIONS | 11496 | KGALS | | | | | | | | | | S RESTRICED SPACE= | | KGALS | | TOTAL AVAILABLE SPACE AFTER RE | | | | KGALS
KGALS | | TOTAL AVAILABLE SPACE AFTER RE | | | | KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated | STRICTED : | SPACE DEDUCTIONS= | 11096
AVAILABLE | KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: | STRICTED: | SPACE DEDUCTIONS= WASTE TYPE DN | AVAILABLE 980 | KGALS
SPACE | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated | STRICTED:
TANK
AN-101 | SPACE DEDUCTIONS= WASTE TYPE DN CC | 11098
AVAILABLE
980
1102 | KGALS
SPACE
KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated | TANK AN-101 AN-106 | SPACE DEDUCTIONS = WASTE TYPE DN CC DSSF | 11096
AVAILABLE
980
1102
25 | KGALS SPACE KGALS KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated | TANK AN-101 AN-106 AP-101 AP-103 AP-104 | WASTE TYPE DN CC DSSF CC DN | 11098
AVAILABLE
980
1102
25
857
1116 | KGALS KGALS KGALS KGALS KGALS KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 | WASTE TYPE DN CC DSSF CC DN DSSF | 980
1102
25
857
1116
376 | KGALS KGALS KGALS KGALS KGALS KGALS KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 | WASTE TYPE DN CC DSSF CC DN DSSF CC DN DSSF DN | 980
1102
25
857
1116
376
1047 | KGALS KGALS KGALS KGALS KGALS KGALS KGALS KGALS KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 | WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN DSSF | 980
1102
25
857
1116
376
1047
165 | KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 | WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN DSSF DN DN DN DN | 980
1102
25
857
1116
376
1047
165
757 | KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 | WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN DSSF DN DN DN DN | 980
1102
25
857
1116
376
1047
165
757
1058 | KGALS | | ISABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 | WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN DN DN DN DN DN DN DN NCRW | 980
1102
25
857
1116
376
1047
165
757
1058
630 | KGALS | | SABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 | WASTE TYPE DN CC DSSF CC DN DSSF DN DSSF DN NCRW DN | 980
1102
25
857
1116
376
1047
165
757
1058
630
22 | KGALS | | SABLE/WASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 AW-105 | WASTE TYPE DN CC DSSF CC DN DSSF DN NCRW DN NCRW | 980
1102
25
857
1116
376
1047
165
757
1058
630
22
711 | KGALS | | SABLE/WASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 AW-105 AW-104 AW-105 AW-106 | WASTE TYPE DN CC DSSF CC DN DSSF DN NCRW DN NCRW DSSF | 980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 AW-105 AW-104 AW-105 AW-105 AW-106 AY-101 | WASTE TYPE DN CC DSSF CC DN DSSF DN NCRW DN NCRW DSSF DC | 980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673
828 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK EVAPORATOR RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-102 AW-103 AW-104 AW-105 AW-101 AW-105 | WASTE TYPE DN CC DSSF CC DN DSSF DN NCRW DN NCRW DN NCRW DSSF DC DN | 980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673
828
365 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK EVAPORATOR RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 AW-101 AW-105 AW-104 AW-105 AW-106 AY-101 AY-102 SY-102 | WASTE TYPE DN CC DSSF CC DN DSSF DN NCRW DN NCRW DN NCRW DSSF DC DN | 980
1102
25
857
1116
376
1047
165
757
1058
630
22
711
673
828
365
384 | KGALS | | SABLEWASTE RECEIVER TANK SPACE: OST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK EVAPORATOR RECEIVER TANK FACILITY WASTE RECEIVER TANK TOTAL | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 AW-101 AW-105 AW-104 AW-105 AW-106 AY-101 AY-102 SY-102 | WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN DN DN DN NCRW DN NCRW DN NCRW DSSF DC DN DN DN NCRW DSSF DC DN DN | 11096 AVAILABLE 980 1102 25 857 1116 376 1047 165 757 1058 630 22 711 673 828 365 365 384 | KGALS | | SABLEWASTE RECEIVER TANK SPACE:
ST Headspace Available to Store Facility Generated and Evaporator Product Waste FACILITY WASTE RECEIVER TANK FACILITY WASTE RECEIVER TANK EVAPORATOR FEED TANK EVAPORATOR RECEIVER TANK FACILITY WASTE RECEIVER TANK | TANK AN-101 AN-106 AP-101 AP-103 AP-104 AP-105 AP-106 AP-107 AP-108 AW-102 AW-103 AW-104 AW-101 AW-105 AW-104 AW-105 AW-106 AY-101 AY-102 SY-102 | WASTE TYPE DN CC DSSF CC DN DSSF DN DN DN DN DN DN NCRW DN NCRW DN NCRW DSSF DC DN DN DN NCRW DSSF DC DN DN | 11098 AVAILABLE 980 1102 25 857 1116 376 1047 165 757 1058 630 22 711 673 828 365 384 11096 | KGALS | SEG1199 FIGURE B-1. TOTAL DOUBLE-SHELL TANK INVENTORY ## APPENDIX C # TANK AND EQUIPMENT CODE AND STATUS DEFINITIONS ## C. TANK AND EQUIPMENT CODE/STATUS DEFINITIONS November 30, 1999 ## 1. TANK STATUS CODES ## WASTE TYPE (also see definitions, section 3) | AGING | Aging Waste (Neutralized Current Acid Waste [NCAW]) | |-------|---| | CC | Complexant Concentrate Waste | | CP | Concentrated Phosphate Waste | | DC | Dilute Complexed Waste | | DN | Dilute Non-Complexed Waste | | DSS | Double-Shell Slurry | | DSSF | Double-Shell Slurry Feed | | NCPLX | Non-Complexed Waste | | PD/PN | Plutonium-Uranium Extraction (PUREX) Neutralized Cladding | | | Removal Waste (NCRW), transuranic waste (TRU) | Plutonium Finishing Plant (PFP) TRU Solids ### TANK USE (DOUBLE-SHELL TANKS ONLY) | CWHT | Concentrated Waste Holding Tank | |-------|---------------------------------| | DRCVR | Dilute Receiver Tank | | EVFD | Evaporate Feed Tank | | SRCVR | Slurry Receiver Tank | ### 2. SOLID AND LIQUID VOLUME DETERMINATION METHODS - F Food Instrument Company (FIC) Automatic Surface Level Gauge - E ENRAF Surface Level Gauge (being installed to replace FICs) - M Manual Tape Surface Level Gauge - P Photo Evaluation - S Sludge Level Measurement Device ## 3. **DEFINITIONS** PT ## **WASTE TANKS - GENERAL** ### Waste Tank Safety Issue A potentially unsafe condition in the handling of waste material in underground storage tanks that requires corrective action to reduce or eliminate the unsafe condition. #### Watch List Tank An underground storage tank containing waste that requires special safety precautions because it may have a serious potential for release of high level radioactive waste because of uncontrolled increases in temperature or pressure. Special restrictions have been placed on these tanks by "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," Section 3137 of the National Defense Authorization Act for Fiscal Year 1991, November 5, 1990, Public Law 101-510, (also known as the Wyden Amendment). ### Characterization Characterization is understanding the Hanford tank waste chemical, physical, and radiological properties to the extent necessary to insure safe storage and interim operation, and ultimate disposition of the waste. #### WASTE TYPES ### Aging Waste (AGING) High level, first cycle solvent extraction waste from the PUREX plant (NCAW) ## Concentrated Complexant (CC) Concentrated product from the evaporation of dilute complexed waste. ## Concentrated Phosphate Waste (CP) Waste originating from the decontamination of the N Reactor in the 100 N Area. Concentration of this waste produces concentrated phosphate waste. ### Dilute Complexed Waste (DC) Characterized by a high content of organic carbon including organic complexants: ethylenediaminetetraacetic acid (EDTA), citric acid, and hydroxyethyl-ethylenediaminetriacetic acid (HEDTA), being the major complexants used. Main sources of DC waste in the DST system are saltwell liquid inventory (from SSTs). #### Dilute Non-Complexed Waste (DN) Low activity liquid waste originating from T and S Plants, the 300 and 400 Areas, PUREX facility (decladding supernatant and miscellaneous wastes), 100 N Area (sulfate waste), B Plant, saltwells, and PFP (supernate). ## Double-Shell Slurry (DSS) Waste that exceeds the sodium aluminate saturation boundary in the evaporator without exceeding receiver tank composition limits. For reporting purposes, DSS is considered a solid. ### Double-Shell Slurry Feed (DSSF) Waste concentrated just before reaching the sodium aluminate saturation boundary in the evaporator without exceeding receiver tank composition limits. This form is not as concentrated as DSS. #### Non-complexed (NCPLX) General waste term applied to all Hanford Site (NCPLX) liquors not identified as complexed. ### PUREX Decladding (PD) PUREX Neutralized Cladding Removal Waste (NCRW) is the solids portion of the PUREX plant neutralized cladding removal waste stream; received in Tank Farms as a slurry. NCRW solids are classified as transuranic (TRU) waste. ## PFP TRU Solids (PT) TRU solids fraction from PFP Plant operations. ### Drainable Interstitial Liquid (DIL) Interstitial liquid that is not held in place by capillary forces, and will therefore migrate or move by gravity. (See also Section 4) ### Supernate The liquid above the solids or in large liquid pools covered by floating solids in waste storage tanks. (See also Section 4 below) ### Ferrocyanide A compound of iron and cyanide commonly expressed as FeCN. The actual formula for the ferrocyanide anion is $[Fe(CN)_6]^{-4}$. #### INTERIM STABILIZATION (Single-Shell Tanks only) #### Interim Stabilized (IS) A tank which contains less than 50 Kgallons of drainable interstitial liquid and less than 5 Kgallons of supernatant liquid. If the tank was jet pumped to achieve interim stabilization, then the jet pump flow or saltwell screen inflow must also have been at or below 0.05 gpm before interim stabilization criteria is met. #### Jet Pump The jet pump system includes 1) a jet assembly with foot valve mounted to the base of two pipes that extend from the top of the well to near the bottom of the well casing inside the saltwell screen, 2) a centrifugal pump to supply power fluid to the down-hole jet assembly, 3) flexible or rigid transfer jumpers, 4) a flush line, and 5) a flowmeter. The jumpers contain piping, valves, and pressure and limit switches. The centrifugal pump and jet assembly are needed to pump the interstitial liquid from the saltwell screen into the pump pit, nominally a 40-foot elevation rise. The power fluid passes through a nozzle in the jet assembly and acts to convert fluid pressure head to velocity head, thereby reducing the pressure in the jet assembly chamber. The reduction in pressure allows the interstitial liquid to enter the jet assembly chamber and mix with the power fluid. Velocity head is converted to pressure head above the nozzle, lifting power fluid, and interstitial liquid to the pump pit. Pumping rates vary from 0.05 gallons to about 4 gpm. #### Saltwell Screen The saltwell system is a 10-inch diameter saltwell casing consisting of a stainless steel saltwell screen welded to a Schedule 40 carbon steel pipe. The casing and screen are to be inserted into the 12-inch tank riser located in the pump pit. The stainless steel screen portion of the system will extend through the tank waste to near the bottom of the tank. The saltwell screen portion of the casing is an approximately 10-foot length of 300 Series, 10-inch diameter, stainless steel pipe with screen openings (slots) of 0.05 inches. #### **Emergency Pumping Trailer** A 45-foot tractor-type trailer is equipped to provide storage space and service facilities for emergency pumping equipment: this consists of two dedicated jet pump jumpers and two jet pumps, piping and dip tubes for each, two submersible pumps and attached piping, and a skid-mounted Weight Factor Instrument Enclosure (WFIE) with an air compressor and electronic recording instruments. The skid also contains a power control station for the pumps, pump pit leak detection, and instrumentation. A rack for over 100 feet of overground double-contained piping is also in the trailer. #### INTRUSION PREVENTION (ISOLATION) Single-Shell Tanks only #### Partially Interim Isolated (PI) The administrative designation reflecting the completion of the physical effort required for Interim Isolation except for isolation of risers and piping that is required for jet pumping or for other methods of stabilization. #### Interim Isolated (II) The administrative designation reflecting the completion of the physical effort required to minimize the addition of liquids into an inactive storage tank, process vault, sump, catch tank, or diversion box. In June 1993, Interim Isolation was replaced by Intrusion Prevention. #### Intrusion Prevention (IP) Intrusion Prevention is the administrative designation reflecting the completion of the physical effort required to minimize the addition of liquids into an inactive storage tank, process vault, sump, catch tank. or diversion box. Under no circumstances are electrical or instrumentation devices disconnected or disabled during the intrusion prevention process (with the exception of the electrical pump). #### Controlled, Clean, and Stable (CCS) Controlled, Clean, and Stable reflects the completion of several objectives: "Controlled" - provide remote monitoring for required instrumentation and implement controls required in the TWRS Authorization Basis; "Clean" - remove surface soil contamination and downpost the Tank Farms to RBA/URMA/RA radiological control status, remove abandoned equipment, and place reusuable equipment in compliant storage; and "Stable" - remove pumpable liquids from the SSTs and IMUSTs and isolate the tanks. #### TANK INTEGRITY #### Sound The integrity classification of a waste storage tank for which surveillance data indicate no loss of liquid attributed to a breach of integrity. #### Assumed Leaker The integrity classification of a waste storage tank for which surveillance data indicate a loss of liquid attributed to a breach of integrity. #### Assumed Re-Leaker A condition that exists after a tank has been declared as an "assumed leaker" and then the surveillance data indicates a <u>new</u> loss of liquid attributed to a
breach of integrity. #### **TANK INVESTIGATION** #### Intrusion A term used to describe the infiltration of liquid into a waste tank. #### **SURVEILLANCE INSTRUMENTATION** #### **Drywells** Drywells are vertical boreholes with 6-inch (internal diameter) carbon steel casings positioned radially around SSTs. These wells range between 50 and 250 feet in depth, and are monitored between the range of 50 to 150 feet. The wells are sealed when not in use. They are called drywells because they do not penetrate to the water table and are therefore usually "dry." There are 759 drywells. Monitoring is done by gamma radiation or neutron-moisture sensors to obtain scan profiles of radiation or moisture in the soil as a function of well depth, which could be indicative of tank leakage. Two single-shell tanks (C-105 and C-106) are currently monitored monthly by gamma radiation sensors. The remaining drywells are monitored on request by gamma radiation sensors. Monitoring by neutron-moisture sensors is done only on request. #### **Laterals** Laterals are horizontal drywells positioned under single-shell waste storage tanks to detect radionuclides in the soil which could be indicative of tank leakage. These drywells can be monitored by radiation detection probes. Laterals are 4-inch inside diameter steel pipes located 8 to 10 feet below the tank's concrete base. There are three laterals per tank. Laterals are located only in A and SX farms. There are currently no functioning laterals and no plan to prepare them for use. #### Surface Levels The surface level measurements in all waste storage tanks are monitored by manual or automatic conductivity probes, and recorded and transmitted or entered into the Surveillance Analysis Computer System (SACS). #### **Automatic FIC** An automatic waste surface level measurement device is manufactured by the Food Instrument Company (FIC). The instrument consists of a conductivity electrode (plummet) connected to a calibrated steel tape, a steel tape reel housing and a controller that automatically raises and lowers the plummet to obtain a waste surface level reading. The controller can provide a digital display of the data and until February 1999, the majority of the FICs transmitted readings to the CASS. Since CASS retirement, all FIC gauges are read manually. FICs are being replaced by ENRAF detectors (see below). #### **ENRAF 854 ATG Level Detector** FICs and some manual tapes are in the process of being replaced by the ENRAF ATG 854 level detector. The ENRAF gauge, fabricated by ENRAF Incorporated, determines waste level by detecting variations in the weight of a displacer suspended in the tank waste. The displacer is connected to a wire wound onto a precision measuring drum. A level causes a change in the weight of the displacer which will be detected by the force transducer. Electronics within the gauge causes the servo motor to adjust the position of the displacer and compute the tank level based on the new position of the displacer drum. The gauge displays the level in decimal inches. The first few ENRAFs that received remote reading capability transmit liquid level data via analog output to the Tank Monitor and Control System (TMACS). The remaining ENRAFs and future installations will transmit digital level data to TMACS via an ENRAF Computer Interface Unit (CIU). The CIU allows fully remote communication with the gauge, minimizing tank farm entry. #### **Annulus** The annulus is the space between the inner and outer shells on DSTs only. Drain channels in the insulating and/or supporting concrete carry any leakage to the annulus space where conductivity probes are installed. The annulus conductivity probes and radiation detectors are the primary means of leak detection for all DSTs. #### Liquid Observation Well (LOW) In-tank liquid observation wells are used for monitoring the interstitial liquid level (ILL) in single-shell waste storage tanks. The wells are usually constructed of fiberglass or TEFZEL-reinforced epoxy-polyester resin (TEFZEL, a trademark of E. I. du Pont de Nemours & Company). There are a few LOWs constructed of steel. LOWs are sized to extend to within 1 inch of the bottom of the waste tank, are sealed at their bottom ends and have a nominal outside diameter of 3.5 inches. Two probes are used to monitor changes in the ILL; gamma and neutron, which can indicate intrusions or leakage by increases or decreases in the ILL. There are 65 LOWs (64 are in operation) installed in SSTs that contain or are capable of containing greater than 50 Kgallons of drainable interstitial liquid, and in two DSTs only. The LOWs installed in two DSTs, (SY-102 and AW-103 tanks), are used for special, rather than routine, surveillance purposes only. #### Thermocouple (TC) A thermocouple is a thermoelectric device used to measure temperature. More than one thermocouple on a device (probe) is called a thermocouple tree. In DSTs there may be one or more thermocouple trees in risers in the primary tank. In addition, in DSTs only, there are thermocouple elements installed in the insulating concrete, the lower primary tank knuckle, the secondary tank concrete foundation, and in the outer structural concrete. These monitor temperature gradients within the concrete walls, bottom of the tank, and the domes. In SSTs, one or more thermocouples may be installed directly in a tank, although some SSTs do not have any trees installed. A single thermocouple (probe) may be installed in a riser, or lowered down an existing #### HNF-EP-0182-140 riser or LOW. There are also four thermocouple laterals beneath Tank 105-A in which temperature readings are taken in 34 thermocouples. #### In-tank Photographs and Videos In-tank photographs and videos may be taken to aid in resolving in-tank measurement anomalies and determine tank integrity. Photographs and videos help determine sludge and liquid levels by visual examination. #### TERMS/ACRONYMS <u>CCS</u> Controlled, Clean and Stable (tank farms) FSAR Final Safety Analysis Report (replaces BIOS, effective October 18, 1999) II Interim Isolated IP Intrusion Prevention Completed IS Interim Stabilized MT/FIC/ENRAF Manual Tape, Food Instrument Corporation, ENRAF Corporation (surface level measurement devices) OSD Operating Specifications Document PI Partial Interim Isolated SAR Safety Analysis Reports SHMS Standard Hydrogen Monitoring System TMACS Tank Monitor and Control System TPA Hanford Federal Facility Consent and Compliance Order, "Washington State Department of Ecology, U. S. Environmental Protection Agency, and U. S. Department of Energy," Fourth Amendment, 1994 (Tri-Party Agreement) USQ Unreviewed Safety Question Wyden Amendment "Safety Measures for Waste Tanks at Hanford Nuclear Reservation," Section 3137 of the National Defense Authorization Act for Fiscal Year 1991, November 5, 1990, Public Law 101-510. ### 4. <u>INVENTORY AND STATUS BY TANK - COLUMN VOLUME CALCULATIONS AND DEFINITIONS FOR TABLE E-6 (SINGLE-SHELL TANKS)</u> | COLUMN HEADING | COLUMN VOLUME CALCULATIONS (Underlined)/DEFINITIONS | |----------------|--| | Total Waste | Solids volume plus Supernatant liquid. Solids include sludge and saltcake (see definitions below). | #### HNF-EP-0182-140 | COLUMN HEADING | COLUMN VOLUME CALCULATIONS (Underlined)/DEFINITIONS | |--|---| | Supernate (1) | May be either measured or estimated. Supernate is either the estimated or measured liquid floating on the surface of the waste or under a floating solids crust. In-tank photographs or videos are useful in estimating the liquid volumes; liquid floating on solids and core sample data are useful in estimating large liquid pools under a floating crust. | | Drainable Interstitial
Liquid (DIL) (1) | This is initially calculated. Drainable interstitial liquid is calculated based on the saltcake and sludge volumes, using calculated porosity values from past pumping or actual data for each tank. Interstitial liquid is liquid that fills the interstitial spaces of the solids waste. The sum of the interstitial liquid contained in saltcake and sludge minus an adjustment for capillary height is the initial volume of drainable interstitial liquid. | | Pumped This Month | Net total gallons of liquid pumped from the tank during the month. If supernate is present, pump production is first subtracted from the supernatant volume. The remainder is then subtracted from the drainable interstitial liquid volume. | | Total Pumped (1) | Cumulative net total gallons of liquid pumped from 1979 to date. | | Drainable Liquid
Remaining (DLR) (1) | Supernate plus Drainable Interstitial Liquid. The total Drainable Liquid Remaining is the sum of drainable interstitial liquid and supernate. | | Pumpable Liquid
Remaining (PLR) (1) | <u>Drainable Liquid Remaining minus unpumpable volume</u> . Not all drainable interstitial liquid is pumpable. | | Sludge | Solids formed during sodium hydroxide additions to waste. Sludge usually was in the form of suspended solids when the waste was originally received in the tank from the waste generator. In-tank photographs or videos may be used to estimate the volume. | | Saltcake | Results from crystallization and precipitation after concentration of liquid waste, usually in an evaporator. If saltcake is layered over sludge, it is only possible to measure total solids volume. In-tank photographs or videos may be used to estimate
the saltcake volume. | | Solids Volume Update | Indicates the latest update of any change in the solids volume. | | Solids Update Source -
See Footnote | Indicates the source or basis of the latest solids volume update. | | Last In-tank Photo | Date of last in-tank photographs taken. | | Last In-tank Video | Date of last in-tank video taken. | | See Footnotes for These
Changes | Indicates any change made the previous month. A footnote explanation for the change follows the Inventory and Status by Tank Appendix (Table E-6). | (1) As pumping continues, supernate, DIL, DLR, PLR, and total gallons pumped are adjusted accordingly based on actual pump volumes. #### APPENDIX D # TANK FARM CONFIGURATION, STATUS, AND FACILITIES CHARTS HNF-EP-0182 FIGURE D-1. HIGH-LEVEL WASTE TANK CONFIGURATION D-3 FIGURE D-2. DOUBLE-SHELL TANK INSTRUMENTATION CONFIGURATION FIGURE D-3. SINGLE-SHELL TANK INSTRUMENTATION CONFIGURATION # THE HANFORD TANK FARM FACILITIES CHARTS (colored foldouts) ARE ONLY BEING INCLUDED IN THIS REPORT ON A QUARTERLY BASIS (i.e., months ending March 31, June 30, September 30, December 31) NOTE: COPIES OF THE FACILITIES CHARTS CAN BE OBTAINED FROM DENNIS BRUNSON, MULTI-MEDIA SERVICES 376-2345, G3-51 ALMOST ANY SIZE IS AVAILABLE, AND CAN BE LAMINATED P-Card required #### APPENDIX E MONTHLY SUMMARY TANK USE SUMMARY PUMPING RECORD, LIQUID STATUS AND PUMPABLE LIQUID REMAINING IN TANK FARMS INVENTORY SUMMARY BY TANK FARM INVENTORY AND STATUS BY TANK #### TABLE E-1. MONTHLY SUMMARY #### TANK STATUS November 30, 1999 | | 200 | 200 | | |-------------------------------|-----------|-----------|--------| | | EAST AREA | WEST AREA | TOTAL | | IN SERVICE | 25 | 03 | 28 (1) | | OUT OF SERVICE | 66 | 83 | 149 | | SOUND | 59 | 51 | 110 | | ASSUMED LEAKER | 32 | 35 | 67 | | INTERIM STABILIZED | 60 | 60 | 120 | | ISOLATED | | | | | PARTIAL INTERIM | 11 | 30 | 41 | | INTRUSION PREVENTION COMPLETE | 55 | 53 | 108 | | CONTROLLED, CLEAN, AND STABLE | 12 | 24 | 36 | | | | WASTE VOI | LUMES (Kgallo | ns) | | | | |--------|------------------------------------|-----------|---|-------|---|-----------------------------------|--| | | | 200 | 200 | | SST | DST | | | | | EAST AREA | WEST AREA | TOTAL | TANKS | TANKS | TOTAL | | SUPERN | <u>ATANT</u> | | | | | | | | AGING | Aging waste | 1653 | 0 | 1653 | 0 | 1653 | 1653 | | CC | Complexant concentrate waste | 2030 | 975 | 3005 | 0 | 3005 | 3005 | | CP | Concentrated phosphate waste | 1092 | 0 | 1092 | 0 | 1092 | 1092 | | DC | Dilute complexed waste | 486 | 0 | 486 | 1 | 485 | 486 | | DN | Dilute non-complexed waste | 2788 | 0 | 2788 | 0 | 2788 | 2788 | | DN/PD | Dilute non-complex/PUREX TRU solid | 321 | 0 | 321 | 0 | 321 | 321 | | DN/PT | Dilute non-complex/PFP TRU solids | 0 | 685 | 685 | 0 | 685 | 685 | | NCPLX | Non-complexed waste | 216 | 302 | 518 | 518 | 0 | 518 | | DSSF | Double-shell slurry feed | 5254 | 167 | 5421 | 1070 | 4351 | 5421 | | TOTAL | SUPERNATANT | 13840 | 2129 | 15969 | 1589 | 14380 | 15969 | | SOLIDS | | | - outside (arrespondent) Devision in the properties (see September 1) | | 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 - 1915 | santaga da da Santaga Palabitatan | De Madeire (Medel var. notiskit filom Elect) | | Double | e-shell slurry | 457 | 0 | 457 | 0 | 457 | 457 | | Sludge | 0 | 6622 | 5960 | 12582 | 11496 | 1086 | 12582 | | Saltca | ıka | 7489 | 16385 | 23874 | 20665 | 3209 | 23874 | | TOTA | L SOLIDS | 14568 | 22345 | 36913 | 32161 | 4752 | 36913 | | ŤΟ | TAL WASTE | 28408 | 24474 | 52882 | 33750 | 19132 | 52882 | | AVAILA | BLE SPACE IN TANKS | 11410 | 781 | 12191 | 0 | 12191 | 12191 | | DRAINA | BLE INTERSTITIAL | 1990 | 3010 | 5000 | 3677 | 1323 | 5000 | | DRAINA | BLE LIQUID REMAINING (2) | 2145 | 3080 | 5225 | 5230 | (2) | 5230 | ⁽¹⁾ Includes six double-shell tanks on Hydrogen Watch List not currently allowed to receive waste, AN-103, AN-104, AN-105, AW-101, SY-101, and SY-103. ⁽²⁾ Drainable Liquid Remaining for single-shell tanks only; not applicable for double-shell tanks TABLE E-2. TANK USE SUMMARY November 30, 1999 | | | | | | ISOLATED TA | | _ | |---------------------------------|-------------------------------------|---------------------------------------|------------------------------|--------------------|-------------------------------|---------------|--------------------| | | TANKS AVAILABLE | | | | INTRUSION | CONTROLLED | INTERIM | | TANK | TO RECEIVE | | ASSUMED | PARTIAL | PREVENTION | CLEAN, AND | TABILIZED | | -ARMS | WASTE TRANSERS | <u>SOUND</u> | LEAKER | <u>INTERIM</u> | <u>COMPLETED</u> | <u>STABLE</u> | <u>TANKS</u> | | EAST | | | | | | | | | A | 0 | 3 | 3 | 2 | 4 | 0 | 5 | | AN | 7 (1) | 7 | 0 | 0 | 0 | | 0 | | AP . | 8 | 8 | 0 | 0 | 0 | | 0 | | AW | 6 (1) | 6 | 0 | 0 | 0 | | 0 | | AX | 0 | 2 | 2 | 1 | 3 | | 3 | | AY | 2 | 2 | 0 | 0 | 0 | | 0 | | ΑŻ | 2 | 2 | 0 | 0 | 0 | | 0 | | В | 0 | 6 | 10 | 0 | 16 | | 16 | | BX | 0 | 7 | 5 | 0 | 12 | 12 | 12 | | | _ | | _ | _ | | | | | BY | 0 | 7 | 5 | 5 | 7 | | 10 | | BY
C | o | 7
9
онимания и «однания на мест | 7 | 3 | 13 | | 14 | | C
Total
WEST | 0
25 | 59 | 7 | 3 | 13
55 | 12 | 14
60 | | C
Total
WEST
S | 0
25
0 | 59 | 7
32
1 | 3
11 | 13
55
2 | 12 | 14
60
4 | | C
Total
WEST
S
S | 0
25
0
0 | 59 | 7
32
1
10 | 3
11
10
6 | 13
55
2
9 | 12 | 14
60
4
9 | | C Total WEST S SX SY | 0
25
0 | 11
5
3 | 7
32
1 | 10
6
0 | 13
55
2
9
0 | 12 | 4
9
0 | | C
VEST
S
SX
SY
T | 0
0
0
0
0
3 (1) | 11
5
3
9 | 7
32
1
10
0
7 | 3
11
10
6 | 13
55
2
9
0
11 | | 4
9
0
14 | | Total WEST S SX SY | 0
0
0
0
0
3 (1)
0 | 11
5
3 | 7
32
1
10
0 | 10
6
0
5 | 13
55
2
9
0 | 12
18
6 | 4
9
0 | HNF-EP-0182-140 (1) Six Double-Shell Tanks on the Hydrogen Tank Watch List are not currently receiving waste transfers (AN-103, 104, 105, AW-101, SY-101 and 103). # TABLE E-3. PUMPING RECORD, LIQUID STATUS AND PUMPABLE LIQUID REMAINING IN TANK FARMS November 30, 1999 | | | | Waste Vo | lumes (Kgallons) | | | | |---------------|----------------------|-------------------|--|-----------------------|---------------------------|---------------------|------------------------| | TANK
FARMS | PUMPED
THIS MONTH | PUMPED FY TO DATE | CUMULATIVE
TOTAL PUMPED
1979 TO DATE | SUPERNATANT
LIQUID | DRAINABLE
INTERSTITIAL | DRAINABLE
LIQUID | PUMPABLE
SST LIQUID | | EAST | THIS MUNTH | TODATE | 13/3 TO DATE | LIQUID | REMAINING | REMAINING | REMAINING | | A | 0.0 | 0.0 | 150.5 | 517 | 107 | 624 | 587 | | AN | N/A | N/A | N/A | 3654 | 513 | N/A | N/A | | AP | N/A | N/A | N/A | 4640 | 25 | N/A | N/A | | AW | N/A | N/A | N/A | 2316 | 361 | N/A | N/A | | AX | 0.0 | 0.0 | 13.0 | 386 | 108 | 497 | 450 | | ΑY | N/A | N/A | N/A | 457 | 23 | N/A | N/A | | ΑZ | N/A | N/A | N/A | 1653 | 3 | N/A | N/A | | ₿ | 0.0 | 0.0 | 0.0 | 15 | 191 | 206 | 107 | | BX | N/A | 0.0 | 200.2 | 24 | 107 | N/A | N/A | | BY | 0.0 | 0.0 | 1567.8 | 0 | 390 | 390 | 282 | | С | 0.0 | 0.0 | 103.0 | 178 | 162 | 296 | 212 | | Total | 0.0 | 0,0 | 2034.5 | 13840 | 1990 | 2013 | 1638 | | WEST | | | | | | | | | S | 8.6 | 16.1 | 1023.8 | 138 | 7 73 | 911 | 839 | | | 3.6 | 14.3 | 378.6 | 134 | 628 | 765 | 701 | | | 0.0 | | | | | | | | | N/A | N/A | N/A | 1660 | 398 | N/A | N/A | | SX
SY
T | | N/A
0.0 | N/A
245.7 | 1660
28 | 398
170 | N/A
→ 198 | N/A
126 | | SY | N/A | | | | | | | | SY
T | N/A
0.0 | 0.0 | 245.7 | 28 | 170 | ~ 198 | 126 | N/A = Not applicable for Double-Shell Tank Farms, and Single-Shell Tank Farms which have been declared Controlled, Clean and Stable (BX, TX, TY). TABLE E-4. INVENTORY SUMMARY BY TANK FARM November 30, 1999 | | | | | | SUPERN | ATANT | LIQUI | D VOL | <u>UMES</u> | (Kgallo | ns) | | | SOLID | S VOLUI | ИE | |-----------|-------|-------------|--------|------|--------|-------|-------|-------|-------------|---------|------|--------------|-----|--------|---------|-------| | TANK | TOTAL | AVAIL | | | | | | | | | | | | | SALT | | | EARM | WASTE | SPACE | _AGING | CC | CP | DC | DN | DN/PD | DN/PT | NCPLX | DSSE | TOTAL | DSS | SLUDGE | CAKE | TOTAL | | EAST | | ٠ | | | | | | | | | | | | | | | | A | 1507 | 0 | 0 | 0 | 0 | 0 | О | 0 | 0 | 0 | 517 | 517 | 0 | 588 | 402 | 990 | | AN | 5435 | 2545 | 0 | 1786 | 0 | 0 | 127 | 0 | 0 | 0 | 1741 | 3654 | 457 | 0 | 1324 | 1781 | | AP | 4729 | 4391 | 0 | 0 | 1092 | 383 | 1375 | 0 | 0 | 0 | 1790 | 4640 | 0 | 0 | 89 | 89 | | AW | 3732 | 3108 | 0 | 244 | 0 | 44 | 887 | 321 | 0 | 0 | 820 | 2316 | 0 | 571 | 845 | 1416 | | AX | 834 | 0 | 0 | 0 | 0 | 0 | a | 0 | 0 | 0 | 386 | 386 | 0 | 26 | 422 | 448 | | AY | 767 | 1193 | 0 | 0 | 0 | 58 | 399 | 0 | 0 | 0 | 0 | 457 | 0 | 310 | 0 | 310 | | AZ | 1787 | 173 | 1653 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1653 | 0 | 134 | 0 | 134 | | В | 1909 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 15 | 0 | 1327 | 567 | 1894 | | ВX | 1496 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24 | O | 24 | 0 | 1265 | 207 | 1472 | | 3Y | 4387 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | o | 0 | 0 | 754 | 3633 | 4387 | | C | 1825 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 177 | 0 | 178 | 0 | 1647 | . 0 | 1647 | | Total . | 28408 | 11410 | 1053 | 2030 | 1092 | 486 | 2788 | 821 | 0 | 218 | 5254 | 13840 | 457 | 8622 | 7489 | 14568 | | WEST | | | | | | | | | | | |
 | | | | | | S | 4962 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 138 | 0 | 138 | 0 | 1185 | 3639 | 4824 | | sx |
4028 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 134 | 134 | 0 | 1064 | 2830 | 3894 | | SY | 2682 | 781 | 0 | 975 | 0 | 0 | 0 | 0 | 685 | 0 | 0 | 1660 | 0 | 71 | 951 | 1022 | | r | 1855 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 28 | 0 | 1682 | 145 | 1827 | | TX | 6778 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 | O | 9 | 0 | 893 | 5876 | 6769 | | TY | 642 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 529 | 110 | 639 | | J | 3527 | o | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 124 | 33 | 157 | 0 | 536 | 2834 | 3370 | | Total | 24474 | 781 | a o | 975 | 0 | 0 | 0 | 0 | 685 | 302 | 187 | 2129 | 0 | 5960 | 16385 | 22345 | | TOTAL | 52882 | 12181 | 1653 | 3005 | 1092 | 486 | 2788 | 321 | 685 | 518 | 5421 | 15969 | 457 | 12582 | 23874 | 36913 | TABLE E-5. INVENTORY AND STATUS BY TANK - DOUBLE SHELL TANKS | | | TANK S | TATUS | | | | LIQUID ' | VOLUME | S | DLIDS VOL | UME | VOLU | ME DETERM | INATION | PHOTOS | VIDEOS | | |------------------|--------------|-------------------|-------------|------------------------------------|--------------------------|---------------------------|--------------------------------------|---|---------------|-----------|------|--------------|--------------------------------|----------------------------|--------------------------|--------------------------|---| | ȚANK | WAST
MATL | TANK
INTEGRITY | TANK
USE | EQUIVA-
LENT
WASTE
INCHES | TOTAL
WASTE
(Kgal) | AVAIL.
SPACE
(Kgal) | SUPER-
NATANT
LIQUID
(Kgal) | DRAIN-
ABLE
INTER-
STIT.
(Kgal) | DSS
(Kgal) | SLUDGE | | | SOLIDS
E VOLUME
D METHOD | SOLIDS
VOLUME
UPDATE | LAST
IN-TANK
PHOTO | LAST
IN-TANK
VIDEO | SEE
FOOTNOT
FOR
THESE
CHANGES | | | | | | , | | _ | - | N TANI | Z PADM | STATUS | | | | | | | | | AN-101 | DN | SOUND | DRCVR | 58.2 | 160 | 980 | 127 | 0 | 0 | 0 | 33 | FM | s | 06/30/99 | 0/0/0 | | ı | | AN-102 | | SOUND | CWHT | 384.7 | 1058 | 82 | 969 | 25 | 0 | 0 | 89 | FM | S | 06/30/99 | 0/0/0 | | 1 | | AN-103 | | SOUND | CWHT | 348.0 | 957 | 183 | 500 | 0 | 457 | 0 | 0 | FM | s | 06/30/99 | 10/29/87 | | 1 | | AN-104 | | SOUND | CWHT | 382.9 | 1053 | 87 | 604 | 187 | 0 | 0 | 449 | FM | S | 06/30/99 | 08/19/88 | | | | AN-105 | DSSF | SOUND | CWHT | 409.5 | 1126 | 14 | 637 | 205 | 0 | o | 489 | FM | s | 06/30/99 | 01/26/88 | | l | | AN-106 | CC | SOUND | CWHT | 13.8 | 38 | 1102 | 21 | 0 | . 0 | 0 | 17 | FM | s | 06/30/99 | 0/0/0 | | 1 | | AN-107 | cc | SOUND | CWHT | 379.3 | 1043 | 97 | 796 | 96 | 0 | 0 | 247 | FM | s | 06/30/99 | 09/01/88 | | i i | | 7 DOUB | LE-SHELI | TANKS | | TOTALS | 5435 | 2545 | 3654 | 513 | 457 | 0 | 1324 | | ·· | | | | | | | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | | | 2005 | | | | . | | | | | STATUS | | ŧ | | | | | | | AP-101 | | SOUND | DRCVR | 405.5 | 1115 | 25 | 1115 | 0 | 0 | 0 | 0 | FM | \$ | 05/01/89 | 0/ 0/ 0 | | | | AP-102 | | SOUND | GRTFD | 397.1 | 1092 | 48 | 1092 | 0 | 0 | 0 | 0 | FM | 8 | 07/11/89 | 0/0/0 | |] | | AP-103
AP-104 | | SOUND | DRCVR | 102.9 | 283 | 857 | 283 | 0 | 0 | 0 | 0 | FM | S · | 05/31/96 | 0/ 0/ 0 | | | | AP-105 | | SOUND | GRTFD | 8.7 | 24 | 1116 | 24 | 0 | 0 | 0 | 0 | FM | S | 10/13/88 | 0/ 0/ 0 | | | | AP-106 | | SOUND | DRCVR | 277.8
33.8 | 764
93 | 376 | 675 | 25 | 0 | 0 | 89 | FM | s | 06/30/99 | 0/ 0/ 0 | 09/27/95 | 1 | | AP-107 | | SOUND | DRCVR | 354.5 | | 1047 | 93 | 0 | 0 | 0 | 0 | FM | \$ | 10/13/88 | 0/ 0/ 0 | | | | AP-108 | | SOUND | DRCVR | 139.3 | 975
383 | 165
757 | 975
383 | 0 | 0 | 0 | 0 | FM
FM | s
s | 10/13/88
10/13/88 | 0/ 0/ 0
0/ 0/ 0 | | Ė | | 20110 | C CLIE | TANKO | | 707410 | | | | | | | | ļ | | | | | | | 5 DOOB | LE-SHELI | IANKS | | TOTALS | 4729 | 4391 | 4640 | 25 | 0 | | 89 | | | | | | <u> </u> | | | | | | | | | . 4 | W TANI | <u> FARM</u> | STATUS | | _ | | | | | | | AW-101 | DSSF | SOUND | CWHT | 409.5 | 1126 | 14 | 820 | 123 | 0 | 0 | 306 | FM | S | 06/30/99 | 03/17/88 | | 1 | | AW-102 | | SOUND | EVFD | 29.8 | 82 | 1058 | 46 | 1 | 0 | 0 | 36 | FM | S | 06/30/99 | 02/02/83 | | | | | DN/PD | | DRCVR | 185.5 | 510 | 630 | 147 | 38 | 0 | 316 | 47 | FM | S | 06/30/99 | 0/ 0/ 0 | | | | W-104 | | SOUND | DRCVR | 406.5 | 1118 | 22 | 887 | 89 | 0 | 0 | 231 | FM | s | 06/30/99 | 02/02/83 | | 1 | | W-105 | DN/PD | SOUND | DRCVR | 156.0 | 429 | 711 | 174 | 24 | 0 | 255 | 0 | FM | S | 06/30/99 | 0/ 0/ 0 | | | | 4W-106 | CC | SOUND | SRCVR | 169.8 | 467 | 673 | 242 | 86 | 0 | 0 | 225 | FM | s | 06/30/99 | 02/02/83 | | | | DOUBL | E-SHELL | TANKS | | TOTALS | 3732 | 3108 | 2316 | 361 | 0 | 571 | 845 | | | | | | | #### TABLE E-5. INVENTORY AND STATUS BY TANK - DOUBLE SHELL TANKS #### November 30, 1999 | | | TANK S | TATUS | | | | LIQUID V | /OLUME | S | OLIDS VOL | UME | VOL | UME DETE | RMINATION | PHOTO | S/VIDEOS | T | |---------|----------|-------------|-------------|---------|-----------------|-----------------|------------------|-----------------|---------------|---------------|------|----------|------------------|------------------|------------------|------------------|----------------| | | | | | EQUIVA- | | ****** | SUPER- | DRAIN-
ABLE | | | | | | | | | SEE
FOOTNOT | | | | | | LENT | TOTAL | | NATANT | | | _ | | LIQUID | SOLIDS | SOLIDS | LAST | LAST | FOR | | TANK | WAST | INTEGRITY | TANK
USE | WASTE | WASTE
(Kgal) | SPACE
(Kgal) | LIQUID
(Kgal) | STIT.
(Kgal) | DSS
(Kgal) | SLUDGE | | | VOLUME
METHOD | VOLUME
UPDATE | IN-TANK
PHOTO | IN-TANK
VIDEO | THESE | . <u>A</u> Y | <u>Y TANK</u> | FARM | <u>STATUS</u> | | | | | | | _ | | AY-101 | | SOUND | DRCVR | 55.3 | 152 | 82B | 58 | 4 | 0 | 94 | 0 | FM | S | 06/30/99 | 12/28/82 | | ! | | AY-102 | DN | SOUND | DRCVR | 223.6 | 615 | 365 | 399 | 19 | ٥ | 216 | 0 | FM | S | 11/30/99 | 04/28/81 | | (6) | | 2 DOUBL | LE-SHELI | TANKS | | TOTALS | 767 | 1193 | 457 | 23 | 0 | 310 | 0 | | | | | | | | | | | | | | | <u>A</u> Z | Z <u>TANK</u> | <u>FARM</u> | STATUS | | | | | | | | | AZ-101 | AGING | SOUND | CWHT | 307.6 | 846 | 134 | 800 | 0 | 0 | 46 | 0 | FM | s | 06/30/98 | 08/18/83 | | I | | AZ-102 | AGING | SOUND | DRCVR | 342.2 | 941 | 39 | 853 | 3 | ٥ | 88 | 0 | FM | S | 06/30/99 | 10/24/84 | | | | 2 DOUBI | LE-SHELI | LTANKS | | TOTALS | 1787 | 173 | 1 <i>6</i> 53 | 3 | 0 | 134 | 0 | <u> </u> | | | | | <u> </u> | | | | | | | | | <u>81</u> | Y TANK | FARM | STATUS | | | | | | | | | SY-101 | CC | SOUND | CWHT | 430.2 | 1183 | o | 598 | 248 | 0 | | 585 | [FM | s | 06/30/99 | 04/12/89 | | (a) | | SY-102 | DN/PT | SOUND | DRCVR | 274.9 | 756 | 384 | 685 | 0 | ه ا | 71 | 0 | FM | S | 06/30/99 | | | | | SY-103 | CC | SOUND | CWHT | 270.2 | 743 | 397 | 377 | 150 | ٥ | 0 | 366 | FM | s | 06/30/99 | | | } | | 3 DOUB | LE-SHELI | LTANKS | | TOTALS | 2682 | 781 | 1660 | 398 | 0 | 71 | 951 | | | | | | | | GRAND | TOTAL | | | | 19132 | 12191 | 14380 | 1323 | 457 | 1086 | 3209 | <u> </u> | | | <u> </u> | | <u> </u> | Note: +/-1 Kgal differences are the result of computer rounding Available Space Calculations Used In this Document Tenk Farms AN, AP, AW, SY 1,140 Kgel AY, AZ (Aging Weste) 980 Kgel NOTE: Tanks AN-102, AN-107, AY-101 and AP-104 are still outside the corrosion control specifications limits for hydroxide. Note that the supermate in AY-102 is within the corrosion specifications, however, the pre-sluicing C-106 solids in AY-102 may still be outside the corrosion control compliance range for hydroxide. An alternate strategy of corrosion control (i.e., monitor tank waste using corrosion probas) is being proposed but has not been fully evaluated. Waste mitigation may be performed either by chemical adjustment or waste transfer/co-mingling of waste with high hydroxide. - (s) Tank SY-101 Total Waste exceeds the "most conservative" Available Space calculations used for these tanks in this document. - (b) Tank AY-102 Sludge volume changed in this tank due to sluicing from tank C-106, per HNF-5267, "Waste Retrieval SluicingCampaign Number 3 Solids Volume Transferred Calculation," Rev 2, dated November 17, 1999. TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | | TANK S | TATUS | | | | | LIQ | UID VOLU! | ME | | SOLIDS | VOLUME | VOLUM | DETERMIN | IATION | PHOTOSA | /IDEOS | · | |--------------|----------------|-------------------|------------|--------|-------------|--------|----------------|-----------|---------|---------|--------|--------|---------|-------------|----------|----------|-------------|--| | | | - <u>-</u> | | | [| DRAIN- | | | DRAIN- | PUMP- | | | | | | | | SEE | | | | | | | SUPER- | ABLE | PUMPED | | ABLE | ABLE | } | | | | | | | FOOTNOT | | | | | STABIL/ | TOTAL | NATE | INTER- | THIS | TOTAL | LIQUID | LIQUID | Į. | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | | WASTE | TANK | ISOLATION | WASTE | רוסטום | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | ANK | MAT'L. | INTEGRITY | STATUS | (Kgal) | (Kgai) | (Kgai) | (Kgal) | (Kgal) | (Kgal) | (Kgel) | (Kgal) | (Kgal) | METHOD | METHOD | UPDATE | РНОТО | VIDEO | CHANGES | | | | | · <u>·</u> | | | | | A TAN | K FARM | STATUS | | | | | | | | | | -101 | DSSF | SOUND | /PI | 891 | 508 | 79 | 0.0 | 0.0 | 587 | 587 |] з | 380 | Р | F | 09/30/99 | 08/21/85 | | 1 | | -102 | DSSF | SOUND | IS/PI | 41 | 4 | 2 | 0.0 | 39.5 | 6 | 0 | 15 | 22 | Р | FP | 07/27/89 | 07/20/89 | | | | -103 | DSSF | ASMD LKR | IS/IP | 371 | 5 | 15 | 0.0 | 111.0 | 20 | 0 | 366 | 0 | | FP | 06/03/88 | 12/28/88 | | 1 | | -104 | NCPLX | ASMD LKR | IS/IP | 28 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 28 | 0 | M | PS | 01/27/78 | 06/25/86 | | | | -105 | NCPLX | ASMD LKR | IS/IP | 51 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 51 | 0 | ₽ | MP | 06/30/99 | 08/20/86 | | | | -1 06 | CP |
SOUND | IS/IP | 1 25 | 0 | 7 | 0.0 | 0.0 | 7 | 0 | 125 | 0 | P | M | 09/07/82 | 08/19/86 | | 1 | | SING | LE-SHELL 1 | ANKS | TOTALS | 1507 | 517 | 107 | 0.0 | 150.5 | 624 | 587 | 588 | 402 | | | | | | | | | | | | | | * ' | - . | AY TA | NK FARM | SILLATS | | | | | | <u> </u> | | | | X-101 | DSSF | SOUND | /PI | 684 | 386 | 58 | 0.0 | 0.0 | 444 | 444 | ј з | 295 | l p | F | 09/30/99 | 08/18/87 | | t | | X-102 | | ASMD LKR | IS/IP | 30 | 0 | 14 | 0.0 | 13.0 | 17 | 3 |] 7 | 23 | F | S | 06/30/99 | 06/05/89 | | | | X-103 | | SOUND | IS/IP | 112 | هٔ ا | 36 | 0.0 | 0.0 | 36 | 3 | ĺ | 104 | F | S | 06/30/99 | 08/13/87 | | I | | | NCPLX | ASMD LKR | IS/IP | 8 | 0 | 0 | 0.0 | 0.0 | 0 | o | 8 | 0 | P | M | 06/30/99 | 08/18/87 | | 1 | | CBIO | LE-SHELL 1 | ANKC | TOTALS: | 834 | 386 | 108 | 0.0 | 13.0 | 497 | 450 | | 400 | | | | | | | | SING | LE-SHELL I | ANKS | TUTALS: | 834 | 360 | 108 | 0.0 | | | | 26 | 422 | L | | | | | <u>. </u> | | 101 | ALCEN V | ACMO I VO | 10.40 | 410 | | | | | K FARM | | | | | | المسموم | | | | | -101 | NCPLX | ASMD LKR | IS/IP | 113 | l º | 6 | 0.0 | 0.0 | 6 | 0 | 0 | 113 | P | F | 06/30/99 | 05/19/83 | | Į. | | -102 | NCPLX | SOUND | IS/IP | 32 | 4 | 0 | 0.0 | 0.0 | 4 | 0 | 0 | 28 | P | F | 06/30/99 | 08/22/85 | | | | -103 | NCPLX | ASMD LKR | IS/IP | 59 | | 0 | 0.0 | 0.0 | 0 | 0 | 0 | 59 | F | F | 06/30/99 | 10/13/88 | | 1 | | -104 | NCPLX
NCPLX | SOUND
ASMD LKR | IS/IP | 371 | 1 | 44 | 0.0 | 0.0 | 45 | 38 | 309 | 61 | M | M | 06/30/99 | 10/13/88 | | l | | -105 | NCPLX | SOUND | IS/IP | 158 | 1 . | 23 | 0.0 | 0.0 | 23 | 0 | 28 | 130 | P | MP | 06/30/99 | 05/19/88 | | | | 106 | | | IS/IP | 117 | ! | 6 | 0.0 | 0.0 | 7 | 0 | 116 | 0 | F | F | 03/31/85 | 02/28/85 | | | | 107 | NCPLX | ASMD LKR | IS/IP | 165 | 1 1 | 12 | 0.0 | 0.0 | 13 | 7 | 93 | 71 | M | M
_ | 06/30/99 | 02/28/85 | | į | | 108 | NCPLX
NCPLX | SOUND
SOUND | IS/IP | 94 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 53 | 41 | F | F | 06/30/99 | 05/10/85 | | | | -109 | | | IS/IP | 127 | 1 | 8 | 0.0 | 0.0 | 8 | 0 | 63 | 64 | M | M | 06/30/99 | 04/02/85 | | | | -110 | NCPLX | ASMD LKR | IS/IP | 246 | | 37 | 0.0 | 0.0 | 38 | 32 | 245 | 0 | MP | MP | 02/28/85 | 03/17/88 | | i | | 111 | NCPLX | ASMD LKR | IS/IP | 237 | ! ! | 35 | 0.0 | 0.0 | 36 | 30 | 236 | 0 | F | F
- | 06/28/85 | 06/26/85 | | 1 | | 112 | NCPLX | ASMD LKR | IS/IP | 33 | 3 | 0 | 0.0 | 0.0 | 3 | 0 | 30 | 0 | F | F | 05/31/85 | 05/29/85 | | | | -201 | NCPLX | ASMD LKR | IS/IP | 29 | | 3 | 0.0 | 0.0 | 4 | 0 | 28 | 0 | M | M | 04/28/82 | 11/12/86 | | 1 | | 202 | NCPLX | SOUND | IS/IP | 27 | l ° | 3 | 0.0 | 0.0 | 3 | 0 | 27 | 0 | P | M | 05/31/85 | 05/29/85 | 06/15/95 | ì | | -203 | NCPLX | ASMD LKR | IS/IP | 51 | ! | 5 | 0.0 | 0.0 | 6 | 0 | 50 | 0 | PM | PM | 06/31/84 | 11/13/86 | | | | -204 | NCPLX | ASMD LKR | IS/IP | 50 | 1 | 5 | 0.0 | 0.0 | 6 | 0 | 49 | 0 | P | M | 05/31/84 | 10/22/87 | | | | | | | | | 4 | | | | | | 9 | | | | | | | ł. | E-8 TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | | TANK S | TATUS | | | | | rio | UID VOLU | ME | | SOLIDS | VOLUME | VOLUM | E DETERMI | NATION | PHOTOS, | VIDEOS | | |---------|-----------|-----------|-----------|--------|--------|--------|--------|----------|---------------|--------|--------|------------|---------|-----------|----------|----------|---------------|----------| | | | | | |] | DRAIN- | | | DRAIN- | PUMP- | | | 1 | | | | | SEE | | | | | | | 1 | ABLE | PUMPED | | ABLE | ABLE | | | | | | ł | | FOOTNOTE | | | | | STABIL/ | JATOT | SUPER- | INTER- | THIS | TOTAL | FIGUID | FIGUID | 1 | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | | WASTE | TANK | ISOLATION | | NATE | STIT. | MONTH | PUMPED | REMAIN | | SLUDGE | CAKE | VOLUME | VOLUME | | IN-TANK | IN-TANK | THESE | | TANK | MAT'L. | INTEGRITY | STATUS | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgal) | (Kgel) | (Kgal) | (Kgal) | (Kgel) | METHOD | METHOD | UPDATE | РНОТО | VIDEO | CHANGES | | | | | | | | | | BX TA | NK FARM | STATUS | | | | | | | | | | 3X-101 | NCPLX | ASMD LKR | IS/IP/CCS | 43 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 42 | 0 | P | M | 04/28/82 | 11/24/88 | 11/10/94 | | | BX-102 | NCPLX | ASMD LKR | IS/IP/CCS | 96 | 0 | 4 | 0.0 | 0.0 | 4 | 0 | 96 | 0 | Р | M | 04/28/82 | 09/18/85 | | ļ | | | NCPLX | SOUND | IS/IP/CCS | 71 |) 9 | 0 | 0.0 | 0.0 | 9 | 0 | 62 | 0 | P | F | 11/29/83 | 10/31/86 | 10/27/94 | ı | | | NCPLX | SOUND | IS/IP/CCS | 99 | 3 | 30 | 0.0 | 17.4 | 33 | 27 | 96 | 0 | F | F | 09/22/89 | 09/21/89 | | | | | NCPLX | SOUND | IS/IP/CCS | 51 | 5 | 6 | 0.0 | 15.0 | 11 | 4 | 46 | 0 | F | s | 06/30/99 | 10/23/86 | | Į | | _ | NCPLX | COUND | IS/IP/CCS | 38 | 0 | 0 | 0.0 | 14.0 | 0 | 0 | 38 | 0 | MP | PS | 08/01/95 | 05/19/68 | 07/17/95 | | | BX-107 | NCPLX | SOUND | IS/IP/CCS | 345 | 1 | 29 | 0.0 | 23.1 | 30 | 23 | 344 | 0 | MP | P | 09/18/90 | 09/11/90 | | 1 | | 3X-108 | NCPLX | ASMD LKR | IS/IP/CCS | 26 | 0 | 1 | 0.0 | 0.0 | 1 | 0 | 26 | 0 | . м | PS | 07/31/79 | 05/05/94 | | Į. | | 3X-109 | NCPLX | COUND | IS/IP/CCS | 193 | 0 | 13 | 0.0 | 8.2 | 13 | 8 | 193 | 0 | FP | P | 09/17/90 | 09/11/90 | |] | | | NCPLX | ASMD LKR | IS/IP/CCS | 207 | 3 | 16 | 0.0 | 1.5 | 19 | 13 | 133 | 71 | MP | M | 06/30/99 | 07/15/94 | 10/13/94 | | | | NCPLX | ASMD LKR | IS/IP/CCS | 162 | 1 | 1 | 0.0 | 116.9 | 3 | 1 | 25 | 136 | М | M | 06/30/99 | 05/19/94 | 02/28/95 | | | BX-112 | NCPLX | SOUND | IS/IP/CCS | 165 | 1 | 7 | 0.0 | 4.1 | 8 | 2 | 184 | 0 | FP | P | 09/17/90 | 09/11/90 | | 1 | | 12 SINC | SLE-SHELL | TANKS | TOTALS: | 1496 | 24 | 107 | 0.0 | 200.2 | 132 | 78 | 1265 | 207 | | | | <u> </u> | | | | | | | | | | _ | | BY TA | NK FARM | STATUS | | . <u>-</u> | | | | | | | | BY-101 | NCPLX | SOUND | IS/IP | 387 | 0 | 5 | 0.0 | 35.8 | 5 | 0 | 109 | 278 | P | M | 05/30/84 | 09/19/89 | | 1 | | BY-102 | NCPLX | SOUND | IS/PI | 277 | 0 | 11 | 0.0 | 159.0 | 11 | 0 | 0 | 277 | MP | М | | 09/11/87 | 04/11/95 | | | BY-103 | NCPLX | ASMD LKR | IS/PI | 400 | 0 | 38 | 0.0 | 95.9 | 38 | 32 | 9 | 391 | MP | М | 06/30/99 | 09/07/89 | 02/24/97 | 1 | | BY-104 | NCPLX | SOUND | IS/IP | 326 | 0 | 18 | 0.0 | 329.5 | 18 | 0 | 150 | 176 | P | M | 06/30/99 | 04/27/83 | | | | BY-105 | NCPLX | ASMD LKR | /P1 | 503 | 0 | 111 | 0.0 | 0.0 | 111 | 111 | 48 | 455 | P | MP | 08/31/99 | 07/01/86 | | | | BY-106 | NCPLX | ASMD LKR | /PI | 562 | ļ o | 119 | 0.0 | 63.7 | 119 | 119 | 84 | 478 | P | MP | 12/31/98 | 11/04/82 | | | | BY-107 | NCPLX | ASMD LKR | IS/IP | 266 | 0 | 25 | 0.0 | 56.4 | 25 | 0 | 40 | 226 | P | MP | 06/30/99 | 10/15/86 | | | | BY-108 | NCPLX | ASMD LKR | IS/IP | 228 | 0 | 9 | 0.0 | 27.5 | 9 | 0 | 154 | 74 | MP | М | 04/28/82 | 10/15/86 | | | | BY-109 | NCPLX | SOUND | IS/PI | 290 | 0 | 37 | 0.0 | 157.1 | 37 | 20 | 57 | 233 | F | PS | 07/08/87 | 06/18/97 | | \ | | BY-110 | NCPLX | SOUND | IS/IP | 398 | 0 | 9 | 0.0 | 213.3 | 9 | 0 | 103 | 295 | м | s | | 07/26/84 | | | | | NCPLX | SOUND | IS/IP | 459 | 0 | 0 | 0.0 | 313.2 | 0 | 0 | 0 | 459 | Р | М | | 10/31/86 | | 1 | | BY-111 | | | | | ۰ ا | 8 | ~ ~ | 1144 | 8 | • | ١٥ | | ا ا | | | | | I | | | NCPLX | SOUND | IS/IP | 291 | 0 | • | 0.0 | 116.4 | • | 0 | 1 | 291 | P | M | 06/30/99 | 04/14/88 | | 1 | Ġ TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | | TUPCE I | /OLUMES | Aperte | DECTI | TOFF | Meine | EDING | necoustati dalci marcamo | ember 30 | talletat trickini disebatah barbar | A\$t. | | | | | | | | |--------------|------------|-----------|-----------|--------|--------|--------------------------|----------------|--------------------------|--------------------------|------------------------------------|--------|--------|----------|--------|--------------|----------|-------------|-----------------| | | | STATUS | 21.00 | MANGE | | A TOM TEA | | UID VOLU | | MANUE R | | VOLUME | | | E DETERM# | | UKENI | WIO | | | | | STABIL/ | TOTAL | SUPER- | DRAIN-
ABLE
INTER- | PUMPED
THIS | TOTAL | DRAIN-
ABLE
LIQUID | PUMP-
ABLE
LIQUID | SOLES | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | SEE
FOOTNOTI | | | WASTE | TANK | ISOLATION | | NATE | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | ANK | MAT'L. | INTEGRITY | STATUS | (Kgal) METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | | | C TA | NK FARM | STATUS | | | | | | | | | | -101 | NCPLX | ASMD LKR | IS/IP | 88 | 0 | 3 | 0.0 | 0.0 | 3 | 0 | 88 | 0 | м | M | 11/29/83 | 11/17/87 | | 1 | | -102 | DC | SOUND | IS/IP | 316 | 0 | 30 | 0.0 | 46.7 | 30 | 17 | 318 | 0 | F | FP | 09/30/95 | 05/18/76 | 08/24/95 | : | | ≻103 | NCPLX | SOUND | /PI | 198 | 79 | 4 | 0.0 | 0.0 | 83 | 83 | 119 | 0 | F | s | 12/31/98 | 07/28/87 | | | | ≻10 4 | CC | SOUND | IS/IP | 295 | 0 | 11 | 0.0 | 0.0 | 11 | 5 | 295 | 0 | FP | P | 09/22/89 | 07/25/90 | | [| | -105 | NCPLX | SOUND | IS/PI | 135 | 48 | 30 | 0.0 | 0.0 | 32 | 9 | 89 | 0 | F | S | 06/30/99 | 08/05/94 | 08/30/95 | | | >106 | NCPLX | SOUND | /PI | 54 | 48 | 0 | 0.0 | 0.0 | 48 | 42 | 6 | 0 | F | PS | 10/31/99 | 08/05/94 | 08/08/94 | (g) | | >107 | DC | SOUND | IS/IP | 257 | 0 | 24 | 0.0 | 40.8 | 24 | 15 | 257 | 0 | F | S | 06/30/99 | 00/00/00 | | | | -108 | NCPLX | SOUND | IS/IP | 66 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 66 | 0 | M | S | 02/24/84 | 12/05/74 | 11/17/94 | .} | | -109 | NCPLX | SOUND | IS/IP | 66 | 4 | 0 | 0.0 | 0.0 | 4 | 0 | 62 | 0 | M | PS | 11/29/83 | 01/30/76 | | i | | -110 | DC | ASMD LKR | IS/IP | 178 | 1 | 28 | 0.0 | 15.5 | 29 | 15 | 177 | 0 | F | FMP | 06/14/95 | 08/12/86 | 05/23/95 | i | | -111 | NCPLX | ASMD LKR | IS/IP | 57 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 57 | 0 | M | S | 04/28/82 | 02/25/70 | 02/02/95 | ·[| | -112 | NCPLX | SOUND | IS/IP | 104 | 0 | 32 | 0.0 | 0.0 | 32 | 26 | 104 | 0 | M | PS | 09/18/90 | 09/18/90 | | l | | -201 | NCPLX | ASMD LKR | IS/IP | 2 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 2 | 0 | P | MP | 03/31/82 | 12/02/86 | | | | 202 | EMPTY | ASMD LKR | IS/IP | 1 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 1 | 0 | P | M |
01/19/79 | 12/09/86 | | | | 203 | NCPLX | ASMD LKR | IS/IP | 5 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 5 | 0 | P | MP | 04/28/82 | 12/09/86 | | i | | -204 | NCPLX | ASMD LKR | IS/IP | 3 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 3 | 0 | P | MP | 04/28/82 | 12/09/86 | | | | 6 SIN | GLE-SHELL | TANKS | TOTALS: | 1825 | 178 | 162 | 0.0 | 103.0 | 296 | 212 | 1647 | 0 | | | | | <u> </u> | | | | | | | | | | | S TA | NK FARM | STATUS | | | | | | | - | | | -101 | NCPLX | SOUND | /Pt | 427 | 12 | 68 | 0.0 | 0.0 | 80 | 80 | 211 | 204 | l F | PS | 12/31/98 | 03/18/88 | | ı | | -102 | DSSF | SOUND | /PI | 506 | 0 | 212 | 3.8 | 42.8 | 212 | 206 | 105 | 401 | P | FP | 11/30/99 | | | (e) | | -103 | DSSF | SOUND | /PI | 231 | 0 | 105 | 1.8 | 22.8 | 105 | 93 | 9 | 222 | l M | s | 06/30/99 | | | lh) | | -104 | NCPLX | ASMD LKR | IS/IP | 294 |] 1 | 28 | 0.0 | 0.0 | 29 | 23 | 293 | 0 | м | M | 12/20/84 | 12/12/84 | | "" | | -105 | NCPLX | SOUND | IS/IP | 456 | 0 | 35 | 0.0 | 114.3 | 35 | 13 | 2 | 454 | MP | s | 09/26/88 | 04/12/89 | | 1 | | 106 | NCPLX | SOUND | /PI | 330 | 0 | 27 | 3.0 | 201.6 | 27 | 5 | 0 | 330 | P | FP | 11/30/99 | 03/17/89 | 09/12/94 | l (f) | | 107 | NCPLX | DANDOS | /Pf | 376 | 14 | 47 | 0.0 | 0.0 | 61 | 61 | 293 | 69 | F | PS | 06/30/99 | 03/12/87 | | 1 | | 108 | NCPLX | SOUND | IS/PI | 450 | 0 | 4 | 0.0 | 199.B | 4 | 0 | 5 | 445 | P | MP | 06/30/99 | 03/12/87 | 12/03/96 | : | | 109 | NCPLX | SOUND | /PI | 507 | 0 | 83 | 0.0 | 111.0 | 83 | 83 | 13 | 494 | F | PS | 09/30/75 | 12/31/98 | | | | -110 | NCPLX | SOUND | IS/PI | 390 | 0 | 30 | 0.0 | 203.1 | 30 | 23 | 131 | 259 | F | PS | 05/14/92 | 03/12/87 | 12/11/96 | ļ | | -111 | NCPLX | SOUND | /PI | 472 | 111 | 64 | 0.0 | 3.3 | 175 | 175 | 117 | 244 | Р | FP | 09/30/99 | 08/10/89 | | | | -112 | NCPLX | SOUND | /PI | 523 | 0 | 70 | 0.0 | 1 25.1 | 70 | 70 | 6 | 517 | P | FP | 12/31/98 | | | | | CIA | GLE-SHELL | TANKS | TOTALS: | 4962 | 138 | 773 | 8.6 | 1023.8 | 911 | 832 | 1185 | 2022 | ├ | | - | | | <u> </u> | | ∡ JIN | OFC. SUETF | LAINA | IUIALS. | +302 | 1 136 | 113 | 0.0 | 1023.8 | 911 | 632 | 1105 | 3639 | <u> </u> | | | <u></u> | | L | E-10 TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | | TANK S | TATUS | | | | | FIG | ND AOFA | ME | | SOLIDS | VOLUME | | VOLUM | E DETERMIN | ATION | | | |--------------|-----------------|-------------------|---------------------|---------|----------------|----------------|-----------------|---------|-----------------|---------------|-----------|---------|---------|----------|------------|----------------------|-------------|----------------| | | | | | | | DRAIN-
ABLE | PUMPED | | DRAIN-
ABLE | PUMP-
ABLE | | | | <u>-</u> | | | | SEE
FOOTNOT | | | | | STABIL/ | | SUPER- | INTER- | THIS | TOTAL | りしていり | FIGUID |] | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | ANK | WASTE
MAT'L. | TANK
INTEGRITY | ISOLATION
STATUS | | NATE
(Kgal) | STIT. | MONTH
(Kgal) | PUMPED | REMAIN | | SLUDGE | | VOLUME | VOLUME | VOLUME | IN-TANK | | THESE | | 1111 | W/A1 E. | RUEGIGI | SIAIOS | (VA as) | (CGSI) | (Kgal) | (Kgai) | (Kgai) | (Kgal) | (Kgal) | (Kgal) | (Kgai) | METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGE | | | | | | | | | | SX TA | NK FARM | STATUS | | | | | | | | | | K-101 | DC | SOUND | /PI | 448 | 0 | 99 | 0.0 | 0.0 | 99 | 99 | 1 0 | 448 | l e | FP | 06/30/99 | 03/10/89 | | 1 | | (-102 | DSSF | SOUND | /PI | 514 | 134 | 82 | 0.0 | 0.0 | 216 | 216 | ٥ | 380 | P | М | 09/30/99 | 01/07/88 | | 1 | | (-103 | NCPLX | SOUND | /PI | 634 | 0 | 132 | 0.0 | 0.0 | 132 | 132 | 115 | 519 | F | s | 06/30/99 | 12/17/87 | | | | (-104 | DSSF | ASMD LKR | /PI | 467 | 0 | 55 | 0.0 | 231.3 | 55 | 44 | 136 | 331 | F | S | 07/31/99 | 09/08/88 | 02/04/98 | (a) | | (-105 | DSSF | SOUND | /PI | 637 | 0 | 141 | 0.0 | 0.0 | 141 | 141 | 65 | 572 | Р | F | 06/30/99 | 06/15/88 | | 1 " | | (-106 | NCPLX | SOUND | /PI | 371 | 0 | 37 | 3.6 | 147.3 | 40 | 30 | 0 | 371 | F | PS | 11/30/99 | 06/01/89 | | (b) | | (-107 | NCPLX | ASMD LKR | 1S/IP | 104 | 0 | 5 | 0.0 | 0.0 | 5 | 0 | 104 | 0 | Р | M | 04/28/82 | 03/06/87 | | | | -108 | NCPLX | ASMD LKR | IS/IP | 87 | 0 | 5 | 0.0 | 0.0 | 5 | 0 | 87 | 0 | Р | М | 12/31/93 | 03/06/87 | | Į. | | (-109 | NCPLX | ASMD LKR | IS/IP | 250 | 0 | 48 | 0.0 | 0.0 | 48 | 25 | 75 | 175 | Р | M | 06/30/99 | 05/21/86 | | | | K-110 | NCPLX | ASMD LKR | IS/IP | 62 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 62 | 0 | М | PS | 10/06/76 | 02/20/87 | | [| | X-111 | NCPLX | ASMD LKR | IS/IP | 122 | 0 | 7 | 0.0 | 0.0 | 7 | 0 | 122 | 0 | м | PS | 06/30/99 | 06/09/94 | | į | | X-112 | NCPLX | ASMD LKR | IS/IP | 108 | 0 | 3 | 0.0 | 0.0 | 3 | 0 | 108 | 0 | P | M | 06/30/99 | 03/10/87 | | | | | NCPLX | ASMD LKR | IS/IP | 31 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 31 | 0 | P | М | 06/30/99 | 03/18/88 | | Į. | | X-114 | NCPLX | ASMD LKR | IS/IP | 181 | 0 | 14 | 0.0 | 0.0 | 14 | 0 | 147 | 34 | P | M | 04/28/82 | 02/26/87 | | ł | | K-115 | NCPLX | ASMD LKR | IS/IP | 12 | 0 | 0 | 0.0 | 0.0 | 0 | 0 | 12 | 0 | P | M | 04/28/82 | 03/31/88 | | 1 | | SING | LE-SHELL | TANKS | TOTALS: | 4028 | 134 | 628 | 3.6 | 378.6 | 765 | 687 | 1064 | 2830 | | | | ļ | | | | | | | · <u> </u> | | | <u>=</u> | | T TAN | TV PADA | OTT A TELLO | | | | | | | | <u> </u> | | 101 | NCPLX | ASMD LKR | IS/PI | 102 | l 1 | 16 | 0.0 | 25.3 | IK FARM :
17 | O | | | ۔ ا | | - 2:22:22 | | | 1 | | 102 | NCPLX | SOUND | IS/IP | 32 | 13 | 0 | 0.0 | 0.0 | 13 | 13 | 37
19 | 64 | F | S | 06/30/99 | | | | | 103 | NCPLX | ASMD LKR | IS/IP | 27 | 1 | 0 | 0.0 | 0.0 | 4 | | l '- | 0 | , r | FP | 08/31/84 | , | | \ | | 104 | NCPLX | SOUND | IS /PI | 317 |] ; | 31 | 0.0 | 149.5 | 31 | 0
27 | 23 | 0 | l 'c | FP | 11/29/83 | | 4010717 | | | 105 | NCPLX | SOUND | IS/IP | 98 | l ő | 23 | 0.0 | 0.0 | 23 | 17 | 317
98 | 0 | | MP | 11/30/99 | 06/29/69 | 10/07/99 | (c) | | 106 | NCPLX | ASMO LKR | IS/IP | 21 | 2 | 23 | 0.0 | 0.0 | 23 | 0 | 19 | 0 | ľ | F | 05/29/87 | 05/14/87 | | } | | 107 | NCPLX | ASMD LKR | IS/Pt | 173 | ءُ ا | 22 | 0.0 | 11.0 | | - | l | 0 | | FP
CD | 04/28/82 | 06/29/89 | OF 100 10 = | | | -108 | NCPLX | ASMD LKR | IS/IP | 44 | | 0 | 0.0 | 0.0 | 22 | 12
0 | 173 | 0
23 | P | FP
M | 05/31/96 | 07/12/84
07/17/84 | U5/09/96 | i | E-11 #### TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 1999 | ABLE PUMPED ABLE ABLE STABIL/ TOTAL SUPER- INTER- THIS TOTAL LIQUID LIQUID SALT LIQUIDS SOLIDS CLAST LAST FOR WASTE TANK ISOLATION WASTE NATE STIT. MONTH PUMPED REMAIN REMAIN SLUDGE CAKE VOLUME VOLUME VOLUME IN-TANK IN-TANK TH | ABLE PUMPED ABLE | | TANK S | TATUS | | | | | LIQ | UID VOLUI | ME | | SOLIDS | VOLUME | VOLU | ME DETERM | INATION | | | | |--
--|---------------|-----------|--------------|--------------|-------|------|-------------------------|---------------|-----------|--------------------------|--------------------------|--------|--------|--------|------------------|----------|----------|----------|---------| | T-110 NCPLX SOUND | 10 NCPLX SOUND F 347 0 31 0.0 50.3 31 25 347 0 P FP 07/31/99 07/12/98 10/07/99 10/07 | ANK | _ | | ISOLATION | WASTE | NATE | ABLE
INTER-
STIT. | THIS
MONTH | PUMPED | ABLE
LIQUID
REMAIN | ABLE
LIQUID
REMAIN | | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | FOOTNOT | | F-111 NCPLX ASMD LKR IS/PI 446 0 34 0.0 9.6 34 29 446 0 P FP 04/18/94 04/13/94 02/13/95 F-112 NCPLX SOUND IS/IP 67 7 0 0.0 0.0 0.0 7 7 60 0 P FP 04/28/92 08/01/94 F-201 NCPLX SOUND IS/IP 29 1 3 0.0 0.0 4 0 28 0 M PS 05/31/76 04/15/66 F-202 NCPLX SOUND IS/IP 29 1 0 2 0.0 0.0 0.0 2 0 21 0 FP P 07/12/81 07/06/89 F-203 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 36 0 M PS 01/31/78 08/03/89 F-204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 36 0 M PS 01/31/78 08/03/89 F-204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 36 0 FP P 07/12/81 08/03/89 F-204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 245.7 198 130 1682 145 TX TANK FARM STATUS TX TANK FARM STATUS TX-101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 NCX-102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 NCX-103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 08/30/99 10/31/85 NCX-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/31/85 NCX-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 08/30/99 10/31/85 NCX-105 NCPLX ASMD LKR IS/IP/CCS 69 0 20 0.0 121.5 20 0 0 699 M PS 08/22/77 10/24/89 NCX-105 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 134.6 10 0 0 341 M S 08/30/99 10/31/85 NCX-106 NCPLX SOUND IS/IP/CCS 36 1 1 0 0.0 134.6 10 0 0 341 M S 08/30/99 10/31/85 NCX-106 NCPLX SOUND IS/IP/CCS 36 1 1 0 0.0 134.6 10 0 0 0 341 M S 08/30/99 10/31/85 NCX-106 NCPLX SOUND IS/IP/CCS 36 1 1 0 0.0 0.0 134.6 10 0 0 0 541 M S 08/30/99 10/31/85 NCX-106 NCPLX SOUND IS/IP/CCS 36 1 1 0 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 NCX-106 NCPLX SOUND IS/IP/CCS 36 1 1 0 0.0 0.0 72.3 10 0 384 0 F PS 08/30/99 10/31/85 NCX-110 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 08/30/99 10/31/85 NCX-110 NCPLX SOUND IS/IP/CCS 36 0 10 0 0 0 9 0.0 98.4 9 0 43 327 M PS 08/30/99 10/31/85 NCX-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 08/30/99 10/31/85 NCX-111 NCPLX SOUND IS/IP/CCS 36 0 10 0.0 11.5 1 15 0 0 0 0 68 9 P P PS 06/30/99 10/31/85 NCX-111 NCPLX SOUND IS/IP/CCS 568 0 15 0.0 115.1 15 0 0 0 0 68 9 P P PS 06/30/99 1 | 11 NCPLX ASMD LKR IS/PI 448 0 34 0.0 9.6 34 29 446 0 P FP 04/18/94 04/13/94 02/13/95 12 NCPLX SOUND IS/IP 67 7 0 0.0 0.0 7 7 60 0 P FP 04/28/82 06/01/PA 15/12 NCPLX SOUND IS/IP 29 1 3 0.0 0.0 4 0 28 0 M PS 05/13/178 04/15/86 02 NCPLX SOUND IS/IP 21 0 2 0.0 0.0 2 0 21 0 FP P 07/12/81 07/06/89 03 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 35 0 M PS 01/31/76 08/03/89 04 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 35 0 M PS 01/31/76 08/03/89 04 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 38 0 FP P 07/12/81 07/06/89 04/13/89 04 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 245.7 198 130 1882 145 | | | | | | ŀ | _ | | | | _ | | | | | | | 40,07,00 | | | -112 NCPLX SOUND IS/IP 67 7 0 0.0 0.0 7 7 7 60 0 P FP 04/28/82 08/01/84 | 12 NCPLX SOUND IS/IP 67 7 0 0.0 0.0 7 7 60 0 P FP 04/28/82 06/01/84 10 NCPLX SOUND IS/IP 29 1 3 0.0 0.0 4 0 28 0 M PS 05/31/76 04/15/66 10 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 35 0 M PS 05/31/76 04/15/68 10 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 35 0 M PS 01/31/78 08/03/89 104 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 36 0 FP P 07/12/81 08/03/89 105 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 245.7 198 130 1682 145 101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 06/31/84 10/31/85 103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.8 15 0 23 37 F FP 06/30/99 10/31/85 105 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 121.5 20 0 0 009 M PS 06/22/77 10/24/89 106 NCPLX SOUND IS/IP/CCS 36 1 1 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 107 NCPLX SOUND IS/IP/CCS 364 0 10 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 108 NCPLX SOUND IS/IP/CCS 344 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/31/85 109 NCPLX SOUND IS/IP/CCS 344 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/31/85 110 NCPLX SOUND IS/IP/CCS 364 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/31/85 111 NCPLX SOUND IS/IP/CCS 355 0 15 0.0 116.1 15 0 37 425 M PS 06/30/99 09/12/89 111 NCPLX SOUND IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 111 NCPLX SOUND IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 1110 NCPLX SOUND | | | | | | 1 | | | | | | I ' | | I - | | | | | 1 | | -202 NCPLX SOUND IS/IP 21 0 2 0.0 0.0 2 0 21 0 FP P 07/12/81 07/06/89 -203 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 36 0 M PS 01/31/76 06/03/89 -204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 36 0 FP P 07/12/81 06/03/89 -204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 38 0 FP P 07/12/81 06/03/89 -204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 38 0 FP P 07/12/81 06/03/89 | 02 NCPLX SOUND IS/IP 21 0 2 0.0 0.0 2 0 0 21 0 FP P 07/12/81 07/06/89 03 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 35 0 M PS 01/31/78 06/03/89 04 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 36 0 FP P 0 07/12/81 06/03/89 08/03/89 04 NCPLX SOUND IS/IP/CCS 187 3 2 0.0 0.0 5 0 74 10 FP P 06/30/89 10/24/85 102 NCPLX SOUND IS/IP/CCS 157 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/31/85 106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 121.5 20 0 0 0.0 157 F S 06/30/99 10/31/85 107 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 13.4.6 10 0 0 341 M S 08/31/85 10/31/85 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 341 0 10 0.0 13.4.6 10 0 0 341 M S 08/30/99 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 341 0 10 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 341 0 10 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 344 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 344 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 344 0 10 0.0 72.3 10 0 384 0 F PS
06/30/99 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 344 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/31/85 10/31/85 10/31/85 SOUND IS/IP/CCS 344 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/31/85 11/3 NCPLX ASMD LKR IS/IP/CCS 369 0 24 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 11/3 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 11/3 NCPLX ASMD LKR IS/IP/CCS 667 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 09/12/89 11/3 NCPLX ASMD LKR IS/IP/CCS 556 0 15 0 15 0.0 10.4 3 15 0 4 531 M PS 06/30/99 09/12/89 11/15 NCPLX ASMD LKR IS/IP/CCS 556 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 09/11/83 09/12/89 11/15 NCPLX ASMD LKR IS/IP/CCS 556 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 09/11/83 | | | | | | I - | | | | | | i | | 1 | | | | 02/10/00 | 1 | | 203 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 36 0 M PS 01/31/78 08/03/89 204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 38 0 FP P 0 7/22/81 08/03/89 6 SINGLE-SHELL TANKS TOTALS: 1855 28 170 0.0 245.7 198 130 1682 145 ***TANK FARM STATUS*** X-101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 X-102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 X-103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/14/86 X-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/16/84 X-105 NCPLX ASMD LKR IS/IP/CCS 341 0 10 0.0 124.5 20 0 0 099 M PS 08/22/77 10/24/89 X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX SOUND IS/IP/CCS 36 1 1 0 0.0 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/24/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/24/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 362 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 09/12/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 607 0 16 0.0 19.2 16 0 0 183 424 M PS 06/30/99 09/12/89 X-113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 551 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 | 03 NCPLX SOUND IS/IP 35 0 4 0.0 0.0 4 0 36 0 M PS 01/31/78 08/03/89 08/03/89 0 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 38 0 FP P 07/22/81 08/03/89 08/ | 201 | NCPLX | SOUND | IS/IP | 29 | 1 | 3 | 0.0 | 0.0 | 4 | 0 | 28 | 0 | M | PS | 05/31/78 | 04/15/86 | | l | | 204 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 38 0 FP P 07/22/81 08/03/89 8 SINGLE-SHELL TANKS TOTALS: 1855 28 170 0.0 245.7 198 130 1882 145 TX TANK FARM STATUS X-101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 X-102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 X-103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 X-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.8 15 0 23 37 F FP 06/30/99 10/31/85 X-105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 609 M PS 08/22/77 10/24/89 X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX ASMD LKR IS/IP/CCS 38 1 1 0 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 X-106 NCPLX SOUND IS/IP/CCS 384 0 10 0 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 X-106 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 13.7 0 0 6 128 P FP 06/30/99 10/31/85 X-106 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-111 NCPLX ASMD LKR IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 10/24/89 X-112 NCPLX SOUND IS/IP/CCS 607 0 18 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-113 NCPLX ASMD LKR IS/IP/CCS 607 0 18 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-113 NCPLX ASMD LKR IS/IP/CCS 607 0 18 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 10.4.3 15 0 4 5311 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 10.4.3 15 0 4 5311 M PS 06/30/99 04/11/83 02/17/95 | 04 NCPLX SOUND IS/IP 38 0 4 0.0 0.0 4 0 38 0 FP P 07/22/81 08/03/89 SINGLE-SHELL TANKS TOTALS: 1855 28 170 0.0 245.7 198 130 1682 145 TX TANK FARM STATUS 101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 08/30/99 10/24/85 103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 08/30/99 10/31/85 103 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.8 15 0 23 37 F FP 08/30/99 10/16/84 100 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.8 15 0 23 37 F FP 08/30/99 10/16/84 100 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 121.5 20 0 0 609 M P5 08/22/77 10/24/89 100 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.8 10 0 0 341 M S 08/30/99 10/31/85 107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0 0.0 0.0 2 0 8 27 FP FP 08/30/99 10/31/85 108 NCPLX SOUND IS/IP/CCS 38 1 1 0 0.0 0.0 2 0 8 27 FP FP 08/30/99 10/31/85 108 NCPLX SOUND IS/IP/CCS 384 0 0 0 0.0 13.7 0 0 6 128 P FP 08/30/99 09/12/89 109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 08/30/99 10/31/85 109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 08/30/99 10/31/85 110 NCPLX ASMD LKR IS/IP/CCS 370 0 9 0.0 115.1 15 0 37 425 M PS 08/30/99 10/24/89 1110 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 08/30/99 10/24/89 1110 NCPLX SOUND IS/IP/CCS 667 0 16 0.0 115.1 15 0 183 424 M PS 08/30/99 10/24/89 1112 NCPLX SOUND IS/IP/CCS 667 0 16 0.0 19.2 16 0 183 424 M PS 08/30/99 10/24/89 1113 NCPLX ASMD LKR IS/IP/CCS 668 0 19 0.0 99.1 19 0 0 568 M S 08/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 556 0 15 0.0 104.3 15 0 4 531 M PS 08/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 08/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 08/30/99 10/11/83 | 202 | NCPLX | SOUND | IS/IP | 21 | 0 | 2 | 0.0 | 0.0 | 2 | 0 | 21 | 0 | FP | P | 07/12/81 | 07/06/89 | | 1 | | X-101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 X-102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 09/31/84 10/31/85 X-103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 16 0 0 157 F S 06/30/99 10/31/85 X-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/31/85 X-104 NCPLX SOUND IS/IP/CCS 69 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 X-105 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-106 NCPLX SOUND IS/IP/CCS 38 1 1 0 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-109 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 08/30/99 10/24/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 08/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-111 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 199 0 0 568 M S 06/30/99 06/16/88 | TX TANK FARM STATUS 101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 06/30/99 10/31/85 103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/31/85 105 NCPLX SOUND IS/IP/CCS 699 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 10/6 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 107 NCPLX ASMD LKR
IS/IP/CCS 38 1 1 0.0 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 106 NCPLX SOUND IS/IP/CCS 38 1 1 0 0.0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 10/9 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 884 0 F PS 06/30/99 09/12/89 110 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 110 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 10/24/89 111 NCPLX SOUND IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 111 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 1112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 1114 NCPLX SOUND IS/IP/CCS 669 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 09/12/89 1114 NCPLX ASMD LKR IS/IP/CCS 669 0 19 0.0 98.1 19 0 0 568 M S 06/30/99 09/11/83 09/23/94 1114 NCPLX ASMD LKR IS/IP/CCS 669 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 09/11/83 09/23/94 1116 NCPLX ASMD LKR IS/IP/CCS 661 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 09/11/83 09/23/94 1116 NCPLX ASMD LKR IS/IP/CCS 661 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 09/11/83 09/23/94 1116 NCPLX ASMD LKR IS/IP/CCS 661 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 09/11/83 09/11/83 | | | | | | _ | • | | | • | _ | | _ | | | | | | | | X-101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 X-102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 X-103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 16 0 0 157 F S 06/30/99 10/31/85 X-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/16/84 X-105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 384 0 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-106 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-110 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-111 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-113 NCPLX ASMD LKR IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-113 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 566 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/13/85 105 NCPLX SOUND IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 108 NCPLX SOUND IS/IP/CCS 384 0 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 110 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 09/12/89 110 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 113 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 114 NCPLX ASMD LKR IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 04/11/83 09/23/94 115 NCPLX ASMD LKR IS/IP/CCS 655 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 09/23/94 116 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 117 NCPLX ASMD LKR IS/IP/CCS 668 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 04/11/83 | 8 SIN | GLE-SHELL | TANKS | TOTALS: | 1855 | 28 | 170 | 0.0 | 245.7 | 198 | 130 | 1682 | 145 | | | | | | | | X-101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 X-102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 X-103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 16 0 0 157 F S 06/30/99 10/31/85 X-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/16/84 X-105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.6 20 0 0 609 M PS 08/22/77 10/24/89 X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 384 0 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-110 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-111 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-111 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-111 NCPLX ASMD LKR IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-111 NCPLX ASMD LKR IS/IP/CCS 658 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 101 NCPLX SOUND IS/IP/CCS 87 3 2 0.0 0.0 5 0 74 10 F P 06/30/99 10/24/85 102 NCPLX SOUND IS/IP/CCS 217 0 22 0.0 94.4 22 0 0 217 M S 08/31/84 10/31/85 103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/13/85 105 NCPLX SOUND IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 108 NCPLX SOUND IS/IP/CCS 384 0 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 110 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 09/12/89 110 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 113 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 114 NCPLX ASMD LKR IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 04/11/83 09/23/94 115 NCPLX ASMD LKR IS/IP/CCS 655 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 09/23/94 116 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 117 NCPLX ASMD LKR IS/IP/CCS 668 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 04/11/83 | | | | - | | | | | TX TA | NK FARM | | _ | - | | | | | | | | X-103 NCPLX SOUND IS/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 X-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/16/84 X-105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 38 1 1 0 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 X-113 NCPLX ASMD LKR IS/IP/CCS 667 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 103 NCPLX SOUND S/IP/CCS 157 0 15 0.0 68.3 15 0 0 157 F S 06/30/99 10/31/85 104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.8 15 0 23 37 F FP 06/30/99 10/16/84 105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.8 10 0 0 341 M S 06/30/99 10/31/85 107 NCPLX ASMD LKR IS/IP/CCS 38 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 0/31/85 109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 110 NCPLX ASMD LKR IS/IP/CCS 362 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 113 NCPLX ASMD LKR IS/IP/CCS 637 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 638 0 19 0.0 99.1 19 0 0 688 663 M PS 06/30/99 06/16/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 663 M PS 06/30/99 04/11/83 | X-101 | NCPLX | SOUND | IS/IP/CCS | 87 | 3 | 2 | 0.0 | | | | 74 | 10 |] F | P | 06/30/99 | 10/24/85 | | l | | X-104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.8 15 0 23 37 F FP 06/30/99 10/16/84 X-105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.8 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX ASMD LKR IS/IP/CCS 38 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 X-113 NCPLX ASMD LKR IS/IP/CCS 607 0
16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 | 104 NCPLX SOUND IS/IP/CCS 65 5 14 0.0 3.6 15 0 23 37 F FP 06/30/99 10/16/84 105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 107 NCPLX ASMD LKR IS/IP/CCS 38 1 1 0 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 09/12/89 110 NCPLX ASMD LKR IS/IP/CCS 360 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 09/23/94 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 116 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | X-102 | NCPLX | SOUND | IS/IP/CCS | 217 |) 0 | 22 | 0.0 | 94.4 | 22 | 0 | 0 | 217 | М | s | 08/31/84 | 10/31/85 | | | | X-105 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 X-113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 106 NCPLX ASMD LKR IS/IP/CCS 609 0 20 0.0 121.5 20 0 0 609 M PS 08/22/77 10/24/89 10/31/85 10/6 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 08/30/99 10/31/85 107 NCPLX ASMD LKR IS/IP/CCS 38 1 1 1 0.0 0.0 2 0 8 27 FP FP 08/30/99 10/31/85 10/8 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 08/30/99 09/12/89 10/90 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 08/30/99 10/24/89 11/10 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 08/30/99 10/24/89 11/10 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 08/30/99 09/12/89 11/11 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 06/30/99 09/12/89 11/10 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 08/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 08/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 08/30/99 06/15/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 08/30/99 04/11/83 10/17/89 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 08/30/99 04/11/83 | K-103 | NCPLX | SOUND | IS/IP/CCS | 157 | 0 | 15 | 0.0 | 68.3 | 15 | 0 | 0 | 157 | F | s | 06/30/99 | 10/31/85 | | | | X-106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 X-107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 X-108 NCPLX SOUND IS/IP/CCS 134 0 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 X-113 NCPLX ASMD LKR IS/IP/CCS 667 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 106 NCPLX SOUND IS/IP/CCS 341 0 10 0.0 134.6 10 0 0 341 M S 06/30/99 10/31/85 107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 10/24/ | | | | | 65 | 5 | 14 | 0.0 | 3.6 | 15 | 0 | 23 | 37 | F | FP | 06/30/99 | 10/16/84 | | | | K-107 NCPLX ASMD LKR IS/IP/CCS 38 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 K-108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 K-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 K-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 K-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 K-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 K-113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 K-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 K-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 107 NCPLX ASMD LKR IS/IP/CCS 36 1 1 0.0 0.0 2 0 8 27 FP FP 06/30/99 10/31/85 10/8 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 10/9 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 11/9 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 11/9 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 11/9 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 11/9 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 11/9 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 11/9 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 11/9 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M PS 06/30/99 06/16/88 11/9 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | | | | - | | 1 | | | | | • | 1 | | 1 | | | | | | | X-108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 X-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 X-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 X-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 X-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 X-113 NCPLX ASMD LKR IS/IP/CCS 667 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 108 NCPLX SOUND IS/IP/CCS 134 0 0 0.0 13.7 0 0 6 128 P FP 06/30/99 09/12/89 109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 04/11/83 | | | | | | | | | | | • | · · | | | _ | | | | | | K-109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 K-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 K-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 K-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 K-113
NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 K-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 K-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 109 NCPLX SOUND IS/IP/CCS 384 0 10 0.0 72.3 10 0 384 0 F PS 06/30/99 10/24/89 110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 04/11/83 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | | | | | | ' | • | | | | - | I - | | | | | | | | | K-110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 K-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 K-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 K-113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 K-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 K-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 110 NCPLX ASMD LKR IS/IP/CCS 462 0 15 0.0 115.1 15 0 37 425 M PS 06/30/99 10/24/89 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 04/11/83 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | | | - | | | 1 | _ | | | - | _ | 1 | | i ' | | | | | Ì | | K-111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 K-112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 K-113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 K-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 K-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 111 NCPLX SOUND IS/IP/CCS 370 0 9 0.0 98.4 9 0 43 327 M PS 06/30/99 09/12/89 112 NCPLX SOUND IS/IP/CCS 649 0 24 0.0 94.0 24 0 0 649 P PS 05/30/83 11/19/87 113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 04/11/83 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | | | | | | | | | | | | 1 | | 1 | | • | | | | | X-113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 X-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 X-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 113 NCPLX ASMD LKR IS/IP/CCS 607 0 16 0.0 19.2 16 0 183 424 M PS 06/30/99 04/11/83 09/23/94 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/16/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 04/11/89 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | | | SOUND | • | | 0 | | | | | 0 | 1 | | | | | | | | | K-114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 C-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 114 NCPLX ASMD LKR IS/IP/CCS 535 0 15 0.0 104.3 15 0 4 531 M PS 06/30/99 04/11/83 02/17/95 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 88 563 M PS 06/30/99 04/11/89 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | (-11 2 | NCPLX | SOUND | IS/IP/CCS | 649 | 0 | 24 | 0.0 | 94.0 | 24 | 0 | 0 | 649 | P | PS | 05/30/83 | 11/19/87 | | 1 | | C-115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88 | 115 NCPLX ASMD LKR IS/IP/CCS 568 0 19 0.0 99.1 19 0 0 568 M S 06/30/99 06/15/88
116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 10/17/89
117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | C-113 | NCPLX | ASMD LKR | IS/IP/CCS | 607 | 0 | 16 | 0.0 | 19.2 | 16 | 0 | 183 | . 424 | M | PS | 06/30/99 | 04/11/83 | 09/23/94 | i i | | | 116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 10/17/89 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | C-1 † 4 | NCPLX | ASMD LKR | IS/IP/CCS | 535 | 0 | 15 | 0.0 | 104.3 | 15 | 0 | 4 | 531 | М | PS | 06/30/99 | 04/11/83 | 02/17/95 | 5 | | K-116 NCPLX ASMD LKR IS/IP/CCS 631 0 23 0.0 23.8 23 0 68 563 M PS 06/30/99 10/17/89 | 117 NCPLX ASMD LKR IS/IP/CCS 626 0 8 0.0 54.3 8 0 29 597 M PS 06/30/99 04/11/83 | | | | | | 1 | | | | | | \ | | 1 | S | | 1 | | 1 | | | | | = | | · · | | - | | | | | - | Ī | | j . | | | | | 1 | | | 110 H3 Et 350 F 3 00/30/33 (2/13/13 | | | | | | 1 | | | | | - | J | | | | | | | | -12 TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS | _ | | TANK S | TATUS | | | L | | LIQ | UID VOLUI | ME | | SOLIDS | VOLUM | VOLUM | E DETERMI | NOITAN | PHOTOS/ | /IDEOS | | |-----|------------|-----------|-----------|-----------|--------|--------|--------|--------|-----------|-----------------|--------|--------|--------|--------------|-------------|----------|--------------|---------|----------------| | _ | | | | | | | DRAIN- | | | DRAIN- | PUMP- | | , | | | | | | SEE | | | | | | | | SUPER- | ABLE | PUMPED | | ABLE | ABLE | l | | ļ | | | | | FOOTNOTES | | | | | | STABIL/ | TOTAL | NATE | INTER- | THIS | TOTAL | LIQUID | LIQUID | 1 | SALT | LIQUIDS | SOLIDS | SOLIDS | LAST | LAST | FOR | | | | WASTE | TANK | ISOLATION | WASTE | LIQUID | STIT. | MONTH | PUMPED | REMAIN | REMAIN | SLUDGE | CAKE | VOLUME | VOLUME | VOLUME | IN-TANK | IN-TANK | THESE | | 1 | ANK | MAT'L. | INTEGRITY | STATUS | (Kgel) | (Kgal) METHOD | METHOD | UPDATE | PHOTO | VIDEO | CHANGES | | | | | | | | | | | TY TA | N <u>K FARM</u> | STATUS | | | | | | - | | · · | | 1 | Y-101 | NCPLX | ASMD LKR | IS/IP/CCS | 118 | 0 | 0 | 0.0 | 8.2 | 0 | 0 | 72 | 46 | P | F | 06/30/99 | 08/22/89 | | | | 7 | TY-102 | NCPLX | SOUND | IS/IP/CCS | 64 | 0 | 14 | 0.0 | 6.6 | 14 | 0 | 0 | 64 | P | FP | 06/28/82 | 07/07/87 | | | | 7 | TY-103 | NCPLX | ASMD LKR | IS/IP/CCS | 162 | 0 | 5 | 0.0 | 11.5 | 5 | 0 | 162 | 0 | Р | FP | 07/09/82 | 08/22/89 | | ł | | 1 | Y-104 | NCPLX | ASMD LKR | IS/IP/CCS | 46 | 3 | 12 | 0.0 | 0.0 | 15 | О | 43 | 0 | P | FP | 06/27/90 | 11/03/87 | | | | 7 | Y-105 | NCPLX | ASMD LKR | IS/IP/CCS | 231 | 0 | 0 | 0.0 | 3.6 | 0 | 0 | 231 | 0 | P | M | 04/28/82 | 09/07/89 | | | | 1 | Y-106 | NCPLX | ASMD LKR | IS/IP/CCS | 21 | ٥ | o | 0.0 | 0.0 | o | 0 | 21 | 0 | P | M | 06/30/99 | 08/22/89 | | <u> </u> | | , 7 | SINGL | E-SHELL T | ANKS | TOTALS: | 642 | 3 | 31 | 0.0 | 29.9 | 34 | 0 | 529 | 110 | | | | | | - | | | | | | | | | | | | | | | | - | - | | | | - | | | | | | | | 1 . | | | ` | K FARM | | | | | | | 1 | | | | | J-101 | NCPLX | ASMD LKR | IS/IP | 25 | 3 | 0 | 0.0 | 0.0 | 3 | 0 | 22 | 0 | P | MP | | 06/19/79 | | | | | J-102 | NCPLX | SOUND | /PI | 375 | 18 | 75 | 0.0 | 0.0 | 93 | 93 | 43 | 314 | P . | MP | 12/31/98 | | | | | | J-103 | NCPLX | SOUND | /PI | 440 | 0 | 177 | 1.4 | 52.3 | 177 | 166 | 12 | 428 | P | FP | 10/31/99 | 1 | | (8) | | | J-104 | NCPLX | ASMD LKR | IS/IP | 122 | 0 | 7 | 0.0 | 0.0 | 7 | 0 | 79 | 43 | P | MP | 06/30/99 | | | } | | | J-105 | NCPLX | SOUND | /PI | 418 | 37 | 83 | 0.0 | 0.0 | 120 | 120 | 32 | 349 | FM | PS | 12/31/98 | | | i | | | J-106 | NCPLX | SOUND | /PI | 226 | 15 | 41 | 0.0 | 0.0 | 56 | 56 | 0 | 211 | F | PS | 12/31/98 | 07/07/88 | | | | | J-107 | DSSF | SOUND | /PI | 408 | 33 | 82 | 0.0 | 0.0 | 115 | 115 | 15 | 360 | ∫ F | S | 12/31/98 | 10/27/88 | | 1 | | | J-108 | NCPLX | SOUND | /Pf | 468 | 24 | 100 | 0.0 | 0.0 | 124 | 124 | 29 | 415 | F | S | 12/31/98 | 09/12/84 | | ŀ | | | J-109 | NCPLX | SOUND | /PI | 465 | 19 | 99 | 0.0 | 0.0 | 118 | 118 | 35 | 411 | F | F | 05/31/99 | 07/07/88 | | 1 | | | J-110 | NCPLX | ASMD LKR | IS/PI | 186 | ٥ | 25 | 0.0 | 0.0 | 25 | 19 | 186 | 0 | [M | M | 12/30/84 | 12/11/84 | | į. | | | J-111 | DSSF | SOUND | /P1 | 329 | 0 | 71 | 0.0 | 0.0 | 71 | 71 | 26 | 303 | P\$ | FPS | 12/31/98 | 06/23/88 | | | | (| J-112 | NCPLX | ASMD LKR | IS/IP | 49 | 4 | 0 | 0.0 | 0.0 | 4 | 0 | 45 | . 0 | P | MP | 02/10/64 | 08/03/89 | | | | ı | J-201 | NCPLX | SOUND | IS/IP | 5 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 4 | 0 | M | S | 08/15/79 | 08/06/89 | | ļ | | • | J-202 | NCPLX | SOUND | IS/IP | 5 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 4 | 0 | M | S | 08/15/79 | 08/08/89 | | | | (| J-203 | NCPLX | SOUND | IS/IP | 3 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 2 | 0 | М | S | 08/15/79 | 06/13/89 | | | | 1 | J-204 | NCPLX | SOUND | IS/IP | 3 | 1 | 0 | 0.0 | 0.0 | 1 | 0 | 2 | 0 | м | S | 08/15/79 | 06/13/89 | | | | - | 6 SING | ILE-SHELL | TANKS | TOTALS: | 3527 | 157 | 760 | 1.4 | 52.3 | 917 | 882 | 536 | 2834 | | | | | | <u> </u> | | - | 3D 4 5 10° | TOTAL |
| | 00255 | 1555 | | | 40==== | | | | | | | | | | | | | GRAND | IUIAL | | | 33750 | 1589 | 3677 | 13.6 | 4970.5 | 5225 | 4247 | 11496 | 20665 | | | | | | 1 | #### TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 1999 ### THESE VOLUMES ARE THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS FOOTNOTES: Total Waste is calculated as the sum of Sludge and Saltcake plus Supernate. The category "Interim isolated" (II) was changed to "intrusion Prevention" (IP) in June 1993. See section C. "Tank and Equipment Code and Status Definitions." Stabilization information from WHC-SD-RE-TI-178 SST STABILIZATION RECORD, latest revision, or SST Stabilization or Cognizant Engineer #### (a) SX-104 Following information from Cognizant Engineer Being pumped directly to SY-102. Pumping was interrupted on July 27, 1999, by a leaking saltwell pump. This tank is being evaluated for interim stabilistion based on equipment failure. Volumes reported are based on Best-Basis inventory Control values and will be udated annually as pumping data accumulates. Total Waste: 466.7 Kgal Supernate: 0.0 Kgal Drainable interstitial: 55.3 Kgai Pumped this month: 0.0 Kgai Total Pumped: 231.3 Kgai Drainable Liquid Remaining: 55,3 Kgal Pumpable Liquid Remaining: 44,3 Kgal Sludge: 136.0 Kgal Saltcake: 330.7 Kgal The values for total waste and saltcake waste have been adjusted to reflect the removal of Interstitial fluid thus far. Assuming the waste is still saltcake and with an LOW level of 75 inches, the apparent lower porosity lowers the estimate of DIL, DLR, and PLR. #### (b) SX-106 Following Information from Cognizant Engineer Being pumped directly to SY-102. Volumes reported are based on Best-Basis Inventory Control values and will be updated annually as pumping data accumulates. Total Waste: 371,2 Kgal Supernate: 0.0 Kgal Drainable Interstitial: 36.6 Kgal Pumped this month: 3.6 Kgal Total Pumped: 147.3 Kgal Drainable Liquid Remaining: 39.6 Kgal Pumpable Liquid Remaining: 30.1 Kgal Sludge: 0.0 Kgal Saltcake: 371.2 Kgal in November 1999, a total of 5,058 gal of fluid was removed from the tank, and a total of 1,422 gal of water was added for pump priming and equipment flushes for a net removal of 3,636 gal of waste. # HNF-EP-0182-140 #### TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 1999 ## THESE VOLUMES ARE THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS FOOTNOTES: (c) T-104 Following Information from Cognizant Engineer This tank was interim Stabilized on November 19, 1999. Total Waste: 316.8 Kgall Supernate: 0.0 Kgall Drainable interstitial: 31.2 Kgal Pumped this month: 0.0 Kgal Total Pumped: 149.5 Kgal Drainable Liquid Remaining: 31.2 Kgal Pumpable Liquid Remaining: 26.9 Kgal Słudge: 316,8 Kgal Saltcake: 0.0 Kgal In-tank video taken October 7, 1999, shows the surface is clearly sludge-type waste with no saltcake present. No visible water on surface. Waste surface appears level across tank with numerous cracks (approx. 2 inches wide and 4 inches deep). There is a minimal (approximately 2 foot diameter) collapsed area around saltwell screen, with no visible bottom. (d) T-110 Following information from Cognizant Engineer Pumping began May 21, 1997. Volumes reported are based on Best-Basis inventory Control values and will be updated annually as pumping data accumulates. Total Waste: 347 Kgal Supernate: 0.0 Kgal Drainable Interstitial: 31.0 Kgal Pumped this month: 0.0 Kgal Total Pumped: 50.3 Kgal Drainable Liquid Remaining: 31.0 Kgal Pumpable Liquid Remaining: 25.0 Kgal Sludge: 347.0 Kgal Saltcake: 0.0 Kgal This tank is currently undergoing stabilization evaluation and pumping operations are not expected to resume. The in-tank video was taken October 7, 1999. # HNP-0182-140 #### TABLE E-6 INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 1999 ### THESE VOLUMES ARE THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS FOOTNOTES: #### (a) S-102 Following information from Cognizant Engineer Pumping commenced March 18, 1999. The waste is pumped directly to SY-102. Pumping stopped on November 17, 1999, when problems with the pump developed. Higher priority work will delay the pump replacement. Total Waste: 506.2 K gal Supernate: 0.0 Kgal Drainable interstitial: 212.0 Kgal Pumped this month: 3.8 Kgal Total Pumped: 42.8 Kgal Drainable Liquid Remaining: 212.0 Kgal Pumpable Liquid Remaining: 206.0 Kgal Sludge: 105.0 Kgal Saltcake: 401.2 Kgal E-16 In November 1999 a total of 4,371 gal of fluid was removed from the tank and a total of 549 gal of water was added by pump priming and equipment flushes, for a net removal of 3,822 gal of tank waste. (f) S-106 Following information from Cognizant Engineer Pumping commenced on April 15, 1999. The waste is pumped directly to SY-102. Total Waste: 329.9 Kgal Supernate: 0.0 Kgal Orainable Interstitial: 26.9 Kgal Pumped this Month: 3.0 Kgal Total Pumped: 201.6 Kgal Drainable Liquid Remaining: 26.9 Kgal Pumpable Liquid Remaing: 7.9 Kgal Studge: 0.0 Kgal Saltcake: 329.9 Kgal In November 1999 a total of 3,720 gal of fluid was removed from the tank and a total of 765 gal of water was added by pump priming and equipment flushes, for a net removal of 2,955 gal of tank waste. In addition, 536 gal of water were used for transfer line flushes. The total waste volume has been revised to reflect the removal of 96,100 gal of interstitial fluid from the saltcake. # HNF-EP-0182-140 #### TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 1999 ## THESE VOLUMES ARE THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS FOOTNOTES: (g) C-106 Following information from WRSS Design Authority Stuicing in this tank commenced November 18, 1998. Final volumes after stuicing completed: Total Waste: 54.0 Kgal Supernate: 48.0 Kgal Oreinable Interstitial Liquid: 0.0 Kgal Drainable Liquid Remaining: 48.0 Kgal Pumpable Liquid Remaining: 42.0 Kgal Sludge: 6.0 Kgal Saltcake: 0.0 Kgal E-17 Although sluicing was considered complete in September 1999 (and DOE-RQ was requested to remove this tank from the high heat load list), in October, 0.14 Inches of sludge were removed, with a cumulative total of 67.75 Inches removed since sluicing began in November 1998. Final volumes per HNF-5267, "Waste Retrieval Sluicing System Campaign Number 3 Solids Volume Transferred Calculation," Rev 2, dated November 17, 1999 (h) S-103 Following Information from Cognizant Engineer Pumping commenced on June 4, 1999. Waste is pumped directly to SY-102. Total Waste: 231 Kgal Supernate: 0.0 Kgal (no good estimate, but supernate still being pumped) Drainable Interstitial: 105.0 Kgal Pumped this Month: 1.8 Kgal Total Pumped: 22.8 Kgal Drainable Liquid Remaing: 105.0 Kgal Pumpable Liquid Remaing: 93.0 Kgal Sludge: 9.0 Kgal Saltcake: 222.0 Kgal In November 1999 a total of 2,376 gal of fluid was removed, and a total of 607 gal of water was added by pump priming and equipment flushes, for a net removal of 1,769 gal of tank waste. Transfer line flushes used 825 gal of water. # HNF-EP-0182-140 #### TABLE E-6. INVENTORY AND STATUS BY TANK - SINGLE-SHELL TANKS November 30, 1999 ## THESE VOLUMES ARE THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS OF THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS OF THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS OF THE RESULT OF ENGINEERING CALCULATIONS AND MAY NOT AGREE WITH SURFACE LEVEL MEASUREMENTS. (i) U-103 Following Information from Cognizant Engineer. Saltwell pumping commenced September 26, 1999. The waste is pumped directly to SY-102. Total Waste: 440.0 Kgal Supernate: 0.0 Kgal Drainable Interstitial Liquid: 176.7 Kgal Pumped this month: 1.4 Kgai Total Pumped: 52.3 Kgai Drainable Liquid Remaining: 176.7 Kgal Pumpable Liquid Remaining: 166.7 Kgal Sludge: 12.0 Kgal Saltcake: 428.0 Kgal In November 1999, a total of 1,482 gal of fluid was removed and 67 gal of water added for priming/flushes. In addition, 677 gal of water were used as dilution. The saltwell pump was shut down on November 2, 1999, due to transfer line plugging. Clearing operations during November added 2,490 gal of water back into the tank after the shutdown. The water volume will be removed from the total pumped after the pumping operations resume. # APPENDIX F PERFORMANCE SUMMARY ### TABLE F-1. SUMMARY OF WASTE TRANSACTIONS IN THE DOUBLE-SHELL TANKS #### SUMMARY OF WASTE TRANSACTIONS IN THE DOUBLE-SHELL TANK (DST) SYSTEM FOR NOVEMBER 1999: ALL VOLUMES IN KGALS - The DST system received waste transfers/additions from SST Stabilization (West Area SWL) and Tank Farms in November. - There was a net change of +34,000 gallons in the DST system for November 1999. - The total DST inventory as of November 30, 1999 was 19,132 Kgals. - There was no Saltwell Liquid (SWL) pumped to the East Area DSTs in November. - There was ~36 Kgals of Saltwell Liquid (SWL) pumped to the West Area DSTs (102-SY) in November. - The SWL numbers are preliminary and are subject to change once cognizant Engineers do a validation, the volumes reported contain actual waste volume plus any water added for dilution and transfer line flushes. - The solids volumes transferred from Tank 106-C to Tank 102-AY were revised last month, the official volume of transferred solids is 186,313 gallons (LMHC-9958557 HNF-5267, Rev. 2). | | NOVEMBER 1 | 999 DST WASTE REC | EIPTS | | | |------------|-------------------------|-------------------|---------------|-----------------|---------------| | | ITY GENERATIONS | OTHER GAINS AS | SOCIATED WITH | OTHER LOSSES AS | SOCIATED WITH | | SWL (West) | +36 Kgal (2SY) | SLURRY | +1 Kgal | SLURRY | -8 Kgal | | Tank Farms | +3 Kgal (2AZ,2AW & 4AN) | CONDENSATE | +6 Kgal | CONDENSATE | -3 Kgal | | TOTAL | +39 Kgal | INSTRUMENTATION | +0 Kgal |
INSTRUMENTATION | -0 Kgal | | | | UNKNOWN | +2 Kgal | UNKNOWN | -3 Kgal | | | | TOTAL | +9 Kgal | TOTAL | -14 Kgal | | | ACTUAL DST
WASTE RECEIPTS | PROJECTED DST
WASTE RECEIPTS | MISC. DST
CHANGES (+/-) | WVR | NET DST
CHANGE | TOTAL DST
VOLUME | |-------|------------------------------|---------------------------------|----------------------------|------|-------------------|---------------------| | OCT99 | 124 | 127 | -19 | Ö | 105 | 19098 | | NOV99 | 39 | 209 | -5 | 0 | 34 | 19132 | | DEC33 | | 156 | | 0 | | | | JAN00 | | 361 | | 0 | | | | FEB00 | | 137 | | 0 | | | | MAR00 | | 95 | | 0 | | | | APR00 | | 124 | | -600 | | | | MAY00 | | 135 | | 0 | | | | JUN00 | | 139 | | 0 | | | | JULGO | | 225 | | 0 | | 1 | | AUG00 | | 201 | | 0 | | | | SEP00 | | 186 | | 0 | | | NOTE: The "PROJECTED DST WASTE RECEIPTS" and "WVR" numbers were updated in October 1999, as supplied by cognizant engineers. 43 NOTE: The Other Category is for Waste Generations from, Evaporator Transining, Pressure Tests, Cross-Site Transfers FIGURE F-1. COMPARISON OF WASTE VOLUME GENERATIONS FOR HANFORD FACILITIES (All volumes in Kgals) #### APPENDIX G MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE FACILITIES # TABLE G-1. EAST AND WEST AREA MISCELLANEOUS UNDERGROUND STORAGE TANKS AND SPECIAL SURVEILLANCE FACILITIES ACTIVE - still running transfers through the associated diversion boxes or pipeline encasements November 30, 1999 | EACILITY | LOCATION | PURPOSE (receives waste from:) | (Gallons) | MONITORED BY | REMARKS | | |--------------------|------------|---------------------------------------|-----------|---------------------|--|-----------------| | 241-A-302-A | A Farm | A-151 DB | 947 | SACS/ENRAF/Manually | Foamed over Catch Tank pump pit & div. box to prevent intrusion | | | 241-ER-311 | B Plant | ER-151, ER-152 DB | 7381 | SACS/FIC/Manually | Zip cord reading taken 11/11/99 | | | 241-AX-152 | AX Farm | AX-152 DB | 0 | SACS/MT | Pumped 11/98 | | | 241-AZ-151 | AZ Farm | AZ-702 condensate | 2708 | SACS/FIC/Manually | Volume changes daily - pumped to AZ-102 as needed | l | | 241-AZ-154 | AZ Farm | | 25 | SACS/MT | | | | 244-BX-TK/SMP | BX Complex | DCRT - Receives from several farms | 14188 | SACS/MT | Using Manual Tape for tank/sump, pumped 10/16/99 to 66.0 inches. | | | 244-A-TK/SMP | A Complex | DCRT - Receives from several farms | 3144 | MCS/SACS/WTF | WTF- pumped 3/99 to AP-108 | 艺 | | A-350 | A Farm | Collects drainage | 306 | MCS/SACS/WTF | WTF (uncorrected) pumped as needed | I | | AR-204 | AY Farm | Tanker trucks from various facilities | 475 | DIP TUBE | Alarms on SACS-pumped to AP-108, 7/99 | Ĥ | | A-417 | A Farm | | 11757 | SACS/WTF | WTF (uncorrected) pumped 4/98 | 2 | | CR-003-TK/SUMP | C Farm | DCRT | 3484 | MT/ZIP CORD | Zip cord in sump O/S 3/11/96, water intrusion, 1/98 | HNF-EP-0182-140 | | WEST AREA | | | | | • | Ť | | 241-TX-302-C | TX Farm | TX-154 DB | 166 | SACS/ENRAF/Manually | | | | 241-U-301-B | U Farm | U-151, U-152, U-153, U-252 DB | 8091 | SACS/ENRAF/Manually | Returned to service 12/30/93 | | | 241-UX-302-A | U Plant | UX-154 DB | 2100 | SACS/ENRAF/Manually | | | | 241-5-304 | S Farm | S-151 DB | 130 | SACS/ENRAF/Manually | Replaced S-302-A, 10/91; ENRAF installed 7/98 | | | | | | | | Sump not alarming. | | | 244-S-TK/SMP | S Farm | DCRT - Receives from several farms | 7622 | SACS/Manually | WTF (uncorrected) | | | 244-TX-TK/SMP | TX Farm | DCRT - Receives from several farms | 15706 | SACS/Manually | MT | | | Vent Station Catch | Tank | Cross Country Transfer Line | 349 | SACS/Manually | MT | | | | | | LEGEND: | DB - Diversion Box | economic de la la companya de la companya de la companya de la companya de la companya de la companya de la co | | Total Active Facilities 7 18 LEGEND: D8 - Diversion Box DCRT - Double-Contained Receiver Tank TK - Tank TK - Tank SMP - Sump FIC - Food instrument Corporation measurement device. MT - Manual Tape Zip Cord - surface level measurement device. WTF - Weight Time Factor - can be recorded as WTF. CWF (corrected), and Uncorrected WTF. SACS - Surveillance Automated Control System MCS - Monitor and Control System Manually - Not connected to any automated system O/8 - Out of Service. TABLE G-2. EAST AREA INACTIVE MISC. UNDERGROUND STORAGE TANKS AND SPECIAL SURV. FACILITIES INACTIVE - no longer receiving waste transfers November 30, 1999 | | | | | MONITORE | ED . | |--------------------|------------|-------------------------------------|-----------|-----------|---| | FACILITY. | LOCATION | RECEIVED WASTE FROM: | (Gallons) | <u>BY</u> | <u>BEMARKS</u> | | 216-BY-201 | BY Farm | TBP Waste Line | Unknown | NM | (216-BY) | | 241-A-302-B | A Farm | A-152 DB | 5720 | SACS/MT | Isolated 1985, Project B-138 | | | | | | | Interim Stabilized 1990, Rain intrusion | | 241-AX-151 | N of PUREX | PUREX | Unknown | NM | Isolated 1985 | | 241-B-301-B | B Farm | B-151, B-152, B-153, B-252 DB | 22250 | NM | Isolated 1985 (1) | | 241-B-302-B | B Farm | B-154 DB | 4930 | NM | Isolated 1985 (1) | | 241-BX-302-A | BX Farm | BR-152, BX-153, BXR-152, BYR-152 DB | 840 | NM | Isolated 1985 (1) | | 241-BX-302-B | BX Farm | BX-154 DB | 1040 | NM | Isolated 1985 (1) | | 241-BX-302-C | BX Farm | BX-155 DB | 870 | NM | Isolated 1985 (1) | | 241-C-301-C | C Farm | C-151, C-152, C-153, C-252 DB | 10470 | NM | Isolated 1985 (1) | | 241-CX-70 | Hot Semi- | Transfer lines | Unknown | NM | Isolated, Decommission Project, | | 241-CX-72 | Works | Transfer lines | 650 | NM | See Dwg H-2-95-501, 2/5/87 | | 241-ER-311A | SW B Plant | ER-151 DB | Unknown | NM | Isolated | | 244-AR VAULT | A Complex | Between farms & B-Plant | Unknown | NM | Not actively being used. Systems activated for final clean-out. | | 244-BXR-TK/SMP-001 | BX Farm | Transfer lines | 7200 | NM | Interim Stabilization 1985 (1) | | 244-BXR-TK/SMP-002 | BX Farm | Transfer lines | 2180 | NM | Interim Stabilization 1985 (1) | | 244-BXR-TK/SMP-003 | BX Farm | Transfer lines | 1810 | NM | Interim Stabilization 1985 (1) | | 244-BXR-TK/SMP-011 | BX Farm | Transfer lines | 7100 | NM | Interim Stabilization 1985 (1) | | 361-B-TANK | B Plant | Drainage from B-Plant | Unknown | NM | Interim Stabilization 1985 (1) | DCRT - Double-Contained Receiver Tank MT - Manual Tape SACS - Surveillance Automated Control System TK - Tank SMP - Sump R - Usually denotes replacement NM - Not Monitored TABLE G-3. WEST AREA INACTIVE MISC. UNDERGROUND STORAGE TANKS AND SPECIAL SURV. FACILITIES INACTIVE - no longer receiving waste transfers | M | $\Omega \Lambda$ | //7 | 3 | RI | כס | |-----|------------------|-----|---|------|----| | /V/ | | ,,, | | f 1£ | | | EACILITY | LOCATION | RECEIVED WASTE FROM: | (Gallons) | BY | REMARKS | |-----------------|---------------|----------------------|-----------|------------|------------------------------| | 216-TY-201 | E. of TY Farm | Supernate from T-112 | Unknown | NM | Isolated | | 231-W-151-001 | N. of Z Plant | 231-Z Floor drains | Unknown | NM | Inactive, last data 1974 | | 231-W-151-002 | N. of Z Plant | 231-Z Floor drains | Unknown | NM | Inactive, last data 1974 | | 240-S-302 | S Farm | 240-S-151 DB | 8468 | SACS/ENRAF | Assumed Leaker EPDA 85-04 | | 241-S-302-A | S Farm | 241-S-151 DB | 0 | | Assumed Leaker TF-EFS-90-042 | Partially filled with grout 2/91, determined still assumed leaker after leak test. Manual FIC readings are unobtainable due to dry grouted surface. | CASS monitoring system retired | 2/23/99; intrusion readings discontinued. | S-304 replaced S-302-A | |--------------------------------|---|------------------------| | | | | | 241-S-302-B | S Farm | S Encasements | Unknown | NM | isolated 1985 (1) | |--------------------|---------------|------------------------------------|---------|---------|---| | 241-SX-302 | SX Farm | SX-151 DB, 151 TB | Unknown | NM | Isolated 1987 | | 241-SX-304 | SX Farm | SX-152 Transfer Box, SX-151 DB | Unknown | NM | Isolated 1985 (1) | | 241-T-301 | T Farm | DB T-151, -151, -153, -252 | Unknown | NM | Isolated 1985 (241-T-301B) | | 241-TX-302 | TX Farm | TX-153 DB | Unknown | NM | Isolated 1985 (1) | | 241-TX-302-X-B | TX Farm | TX Encasements | Unknown | NM | Isolated 1985 (1) | | 241-TX-302-B | TX Farm | TX-155 DB | 1600 | SACS/MT | New MT installed 7/16/93 | | 241-TX-302-B(R) | E. of TX Farm | TX-155 DB | Unknown | NM | Isolated | | 241-TY-302-A | TY Farm | TX-153 DB | Unknown | NM | Isolated 1985 (1) | | 241-TY-302-B | TY Farm | TY Encasements | Unknown | NM | Isolated 1985 (1) | | 241-Z-8 | E. of Z Plant | Recupiex waste | Unknown | NM | Isolated, 1974, 1975 | | 242-T-135 | T Evaporator | T Evaporator | Unknown | · NM | Isolated | | 242-TA-R1 | T Evaporator | Z Plant waste | Unknown | NM | Isolated | | 243-S-TK-1 | N. of S Farm | Pers. Decon. Facility | Unknown | NM | Isolated | | 244-U-TK/SMP | U Farm | DCRT - Receives from several farms | Unknown | NM | Not yet in use | | 244 TXR VAULT | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 244-TXR-TK/SMP-001 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 244-TXR-TK/SMP-002 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 244-TXR-TK/SMP-003 | TX Farm | Transfer lines | Unknown | NM | Interim Stabilized, MT removed 1984 (1) | | 270-W | SE of U Plant | Condensate from U-221 | Unknown | NM | Isolated 1970 | | 361-T-TANK | T Plant | Drainage from T-Plant | Unknown | NM | Isolated 1985 (1) | | 361-U-TANK | U Plant | Drainage from U-Plant | Unknown | NM | Interim Stabilzed, MT removed 1984 (1) | Total West Area inactive facilities 27 LEGEND: DB - Diversion Box. TB - Transfer Box. DCRT -
Double-Contained Receiver Tank. TK - Tank. SMP - Sump. R - Usually deriotse replacement. FIG - Surface Level Monitoring Device. MT - Manual Tape. O/S - Out of Service. SACS - Surveillance Automated Control System. NM - Not Monitored. ENRAF - Surface Level Monitoring Device. (1) SOURCE: WASTE STORAGE TANK STATUS & LEAK DETECTION CRITERIA document # APPENDIX H LEAK VOLUME ESTIMATES TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 1 of 5) November 30, 1999 | | Date Declared Confirmed or | Volume | | Associated
KiloCuries | | Interim
Stabilized | Leak ! | Estimate | |---------------------------------|----------------------------|-------------------------|---|--------------------------|------------|----------------------------|-----------------|------------------| | Tank Number | Assumed Leaker (3) | Gallons (2) | | 137 cs (10) | <u>)</u> | Date (11) | Updated | Reference | | 241-A-103 | 1987 | 5500 | (8) | - <u></u> | = | 06/88 | 1987 | (j) | | 241-A-104 | 1975
1963 | 500 to 2500
10000 to | | 0.8 to 1.8 | | 09/78
07/79 | 1983 | (a)(q) | | 241-A-105 (1) | 1903 | 277000 | | 85 to 760 | (D) | 07/75 | 1991 | (b)(c) | | 241-AX-102 | 1988 | 3000 | | | | 09/88 | 1989 | (h) | | 241-AX-104
241-B-101 | 1977
1974 | | (6)
(6) | | | 08/81
03/81 | 1989
1989 | (g) | | 241-B-103 | 1978 | | (6) | | | 02/85 | 1989 | (g)
(g) | | 241-B-105
241-B-107 | 1978
1980 | 8000 | (6)
(8) | | | 12/84
03/85 | 1989
1986 | (g)
(d)(f) | | 241-B-110 | 1981 | 10000 | (8) | | | 03/85 | 1986 | (d) | | 241-B-111 | 1978 | - | (6) | | | 06/85 | 1989 | (g) | | 241-8-112
241-8-201 | 1978
1980 | 2000
1200 | (8) | | | 05/85
08/81 | 1989
1984 | (g)
(a)(f) | | 241-B-203 | 1983 | 300 | (8) | | | 06/84 | 1986 | (d) | | 241-B-204
241-BX-101 | 1984
1972 | 400 | (8) | | | 06/84
09/78 | 1989
1989 | (g) | | 241-BX-102 | 1971 | 70000 | (0) | 50 | (1) | 11/78 | 1986 | (g)
(d) | | 241-BX-108 | 1974 | 2500 | (0) | 0.5 | (1) | 07/79 | 1986 | (d) | | 241-BX-110
241-BX-111 | 1976
1984 (13) |
 | (6)
(6) | | | 08/85
03/95 | 1989
1993 | (g)
(g) | | 241-BY-103 | 1973 | <5000 | 14/ | | | 11/97 | 1983 | (a) | | 241-BY-105 | 1984 | | (6) | | | N/A | 1989 | (g) | | 241-BY-106
241-BY-107 | 1984
1984 | 15100 | (6)
(8) | | | N/A
07/79 | 1989
1989 | (g)
(g) | | 241-BY-108 | 1972 | <5000 | | | | 02/85 | 1983 | (a) | | 241-C-101 | 1980 | 20000 | (8)(10) |) | | 11/83 | 1986 | (d) | | 241-C-110
241-C-111 | 1984
1968 | 2000
5500 | (8) | | | 05/95
03/84 | 1989
1989 | (g)
(g) | | 241-C-201 (4) | 1988 | 550 | ,-, | | | 03/82 | 1987 | (i) | | 241-C-202 (4)
241-C-203 | 1988
1984 | 450
400 | (8) | | | 08/81
03/82 | 1987
1986 | (d) | | 241-C-204 (4) | 1988 | 350 | (0) | | | 09/82 | 1987 | (<u>i)</u> | | 241-S-104 | 1968 | 24000 | (8) | | | 12/84 | 1989 | (g) | | 241-SX-104 | 1988 | | (8) | | | N/A | 1988 | (k) | | 241-5X-107
241-5X-108 (5)(14 | 1964
I) 1962 | <5000
2400 to | | 17 to 140 | | 10/79
08/79 | 1983
1991 | (a)
(m)(q)(t) | | | | 35000 | | (m)(q)(t) | | | | • | | 241-SX-109 (5)(14
241-SX-110 | l) 1965
1976 | < 10000
5500 | (8) | < 40 | (n)(t) | 05/81
08/7 9 | 1992
1989 | (n) (t)
(g) | | 241-SX-111 (14) | 1974 | 500 to 2000 | 1 | 0.6 to 2.4 | (I)(q)(t) | 07/79 | 1986 | (d)(q)(t) | | 241-SX-112 (14) | 1969
1962 | 30000
15000 | | 40
8 | (I)(t) | 07/79 | 1986 | (d)(t) | | 241-SX-113
241-SX-114 | 1972 | | (6) | 8 | (1) | 11/78
07/79 | 1986
1989 | (d)
(g) | | 241-\$X-115 | 1965 | 50000 | | 21 | (o) | 09/78 | 1992 | (o) | | 241-T-101
241-T-103 | 1992
1974 | | (8)
(8) | | | 04/93
11/83 | 1992
1989 | (p) | | 241-T-106 | 1973 | 115000 | (8) | 40 | (1) | 08/81 | 1986 | (g)
(d) | | 241-T-107 | 1984 | < 1000 | (6) | | | 05/96 | 1989 | (g) | | 241-T-108
241-T-109 | 1974
1974 | <1000 | (8) | | | 11/78
12/84 | 1980
1989 | (f)
(g) | | 241-T-111 | 1979, 1994 (12) | <1000 | (8) | | | 02/95 | 1994 | (f)(r) | | 241-TX-105 | 1977
1984 | 2500 | (6) | | | 04/83
10/79 | 1989
1986 | (g)
(d) | | 241-TX-107 (5)
241-TX-110 | 1984
1977 | | (6) | | | 04/83 | 1989 | (d)
(g) | | 241-TX-113 | 1974 | - | (6) | | | 04/83 | 1989 | (g) | | 241-TX-114
241-TX-115 | 1974
1977 | | (6)
(6) | | | 04/83
09/83 | 1989
1989 | (g)
(g) | | 241-TX-116 | 1977 | | (6) | | | 04/83 | 1989 | (g) | | 241-TX-117
241-TY-101 | 1977
1973 | <1000 | (6)
(8) | | | 03/83
04/83 | 1989
1980 | (g)
(f) | | 241-TY-101
241-TY-103 | 1973 | 3000 | ,0) | 0.7 | (1) | 02/83 | 1986 | (d) | | 241-TY-104 | 1981 | | (8) | 4 | | 11/83 | 1986 | (d) | | 241-TY-105
241-TY-106 | 1960
1959 | 20000 | | 2 | (f)
(f) | 02/83
11 <i>/</i> 78 | 1986
1986 | (d)
(d) | | 241-U-101 | 1959 | 30000 | | 20 | (1) | 09/79 | 1986 | (d) | | 241-U-104 | 1961
1975 | 55000
5000 to 8100 | (0) | 0.09 | (1) | 10/78 | 1986 | (d)
(d)(a) | | 241-U-110
241-U-112 | 1975
1980 | 5000 to 8100
8500 | (8) | 0.05 | (4) | 12/84
09/79 | 1986
1986 | (d)(q)
(d) | | 67 Tanks | | <750,000 - 1,0 | 200000000000000000000000000000000000000 | 0 (7) | | | ar dan Maria da | | N/A = not applicable (not yet interim stabilized) # TABLE H-1. SINGLE-SHELL LEAK VOLUME ESTIMATES (Sheet 2 of 5) #### Footnotes: - Current estimates [see reference(b)] are that 610 Kgallons of cooling water was added to Tank 241-A-105 from November 1970 to December 1978 to aid in evaporative cooling. In accordance with Dangerous Waste Regulations [Washington Administrative Code 173-303-070 (2)(a)(ii), as amended, Washington State Department of Ecology, 1990, Olympia, Washington], any of this cooling water that has been added and subsequently leaked from the tank must be classified as a waste and should be included in the total leak volume. In August 1991, the leak volume estimate for this tank was updated in accordance with the WAC regulations. Previous estimates excluded the cooling water leaks from the total leak volume estimates because the waste content (concentration) in the cooling water which leaked should be much less than the original liquid waste in the tank (the sludge is relatively insoluble). The total leak volume estimate in this report (10 Kgallons to 277 Kgallons) is based on the following (see References): - 1. Reference (b) contains an estimate of 5 Kgallons to 15 Kgallons for the initial leak prior to August 1968. - 2. Reference (b) contains an estimate of 5 Kgallons to 30 Kgallons for the leak while the tank was being sluiced from August 1968 to November 1970. - 3. Reference (b) contains an estimate of 610 Kgallons of cooling water added to the tank from November 1970 to December 1978 but it was estimated that the leakage was small during this period. This reference contains the statement "Sufficient heat was generated in the tank to evaporate most, and perhaps nearly all, of this water." This results in a low estimate of zero gallons leakage from November 1970 to December 1978. - 4. Reference (c) contains an estimate the 378 to 410 Kgallons evaporated out of the tank from November 1970 to December 1978. Subtracting the minimum evaporation estimate from the cooling water added estimate provides a range from 0 to 232 Kgallons of cooling water leakage from November 1970 to December 1978. | | Low Estimate | High Estimate | |--------------------------------|--------------|---------------| | Prior to August 1968 | 5,000 | 15,000 | | August 1968 to November 1970 | 5,000 | 30,000 | | November 1970 to December 1978 | 0 | 232,000 | | Totals | 10,000 | 277,000 | - These leak volume estimates do not include (with some exceptions), such things as: (a) cooling/raw water leaks, (b) intrusions (rain infiltration) and subsequent leaks, (c) leaks inside the tank farm but not through the tank liner (surface leaks, pipeline leaks, leaks at the joint for the overflow or fill lines, etc.), and (d) leaks from catch tanks, diversion boxes, encasements, etc. - In many cases, a leak was suspected long before it was identified or confirmed. For example, reference (d) shows that Tank 241-U-104 was suspected of leaking in 1956. The leak was "confirmed" in 1961. This report lists the "assumed leaker" date of 1961. Using present standards, Tank 241-U-104 would have been declared an assumed leaker in 1956. In 1984, the criteria designations of "suspected leaker," "questionable integrity," "confirmed leaker," "declared leaker," "borderline" and "dormant," were merged into one category now reported as "assumed leaker." See reference (f) for explanation of when, how long, and how fast some of the tanks leaked. It is highly likely that there have been undetected leaks from single-shell tanks because of the nature of their design and instrumentation. # TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 3 of 5) - (4) The leak volume estimate date for these tanks is before the "declared leaker" date because the tank was in a "suspected leaker" or "questionable integrity" status; however, a leak volume had been estimated prior to the tank being reclassified. - (5) The increasing radiation levels in drywells and laterals associated with these three tanks could be indicating continuing leak or movement of existing radionuclides in the soil. There is no conclusive way to confirm these observations. - (6) Methods were used to estimate the leak volumes from these 19 tanks based on the <u>assumption</u> that their cumulative leakage is approximately the same as for 18 of the 24 tanks identified in footnote (9). For more details see reference (g). The total leak volume estimate for these tanks is 150 Kgallons (rounded to the nearest Kgallons), for an average of approximately 8 Kgallons for each of 19 tanks. - (7) The total has been rounded to the nearest 50 Kgallons. Upper bound values were used in many cases in developing these estimates. It is
likely that some of these tanks have not actually leaked. - (8) Leak volume estimate is based solely on observed liquid level decreases in these tanks. This is considered to be the most accurate method for estimating leak volumes. - (9) The curie content shown is as listed in the reference document and is <u>not</u> decayed to a consistent date: therefore, a cumulative total is inappropriate. - (10) Tank 241-C-101 experienced a liquid level decrease in the late 1960s and was taken out of service and pumped to a "minimum heel" in December 1969. In 1970, the tank was classified as a "questionable integrity" tank. Liquid level data show decreases in level throughout the 1970s and the tank was saltwell pumped during the 1970s, ending in April 1979. The tank was reclassified as a "confirmed leaker" in January 1980. See references (q) and (s); refer to reference (s) for information on the potential for there to have been leaks from other C-farm tanks (specifically, C-102, C-103, and C-109). - (11) These dates indicate when the tanks were declared to be interim stabilized. In some cases, the official interim stabilization documents were issued at a later date. Also, in some cases, the field work associated with interim stabilization was completed at an earlier date. - (12) Tank T-111 was declared an assumed re-leaker on February 28, 1994, due to a decreasing trend in surface level measurement. This tank was pumped, and interim stabilization completed on February 22, 1995. - (13) Tank BX-111 was declared an assumed re-leaker in April 1993. Preparations for pumping were delayed, following an administrative hold placed on all tank farm operations in August 1993. Pumping resumed and the tank was declared interim stabilized on March 15, 1995. - The leak volume and curie release estimates on SX-108, SX-109, SX-111, and SX-112 have been reevaluated using a Historical Leak Model [see reference (u)]. In general, the model estimates are much higher than the values listed in the table, both for volume and curies released. The values listed in the table do not reflect this revised estimate because, "In particular, it is worth emphasizing that this report was never meant to be a definitive update for the leak baseline at the Hanford Site. It was rather meant to be an attempt to view the issue of leak inventories with a new and different methodology." (This quote is from the first page of the referenced report). # TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 4 of 5) #### References: - (a) Murthy, K.S., et al, June 1983, Assessment of Single-Shell Tank Residual Liquid Issues at Hanford Site, Washington, PNL-4688, Pacific Northwest Laboratory, Richland, Washington. - (b) WHC, 1991a, Tank 241-A-105 Leak Assessment, WHC-MR-0264, Westinghouse Hanford Company, Richland, Washington. - (c) WHC, 1991b, Tank 241-A-105 Evaporation Estimate 1970 Through 1978, WHC-EP-0410, Westinghouse Hanford Company, Richland, Washington. - (d) Smith, D. A., January 1986, Single-Shell Tank Isolation Safety Analysis Report, SD-WM-SAR-006, Rev. 1, Westinghouse Hanford Company, Richland, Washington. - (e) McCann, D. C., and T. S. Vail, September 1984, Waste Status Summary, RHO-RE-SR-14, Rockwell Hanford Operations, Richland, Washington. - (f) Catlin, R. J., March 1980, Assessment of the Surveillance Program of the High-Level Waste Storage Tanks at Hanford, Hanford Engineering Development Laboratory, Richland, Washington. - (g) Baumhardt, R. J., May 15, 1989, Letter to R. E. Gerton, U.S. Department of Energy-Richland Operations Office, Single-Shell Tank Leak Volumes, 8901832B R1, Westinghouse Hanford Company, Richland, Washington. - (h) WHC, 1990a, Occurrence Report, Surface Level Measurement Decrease in Single-Shell Tank 241-AX-102, WHC-UO-89-023-TF-05, Westinghouse Hanford Company, Richland, Washington. - (i) Groth, D. R., July 1, 1987, Internal Memorandum to R. J. Baumhardt, Liquid Level Losses in Tanks 241-C-201, -202 and -204, 65950-87-517, Westinghouse Hanford Company, Richland, Washington. - (j) Groth, D. R. and G. C. Owens, May 15, 1987, Internal Memorandum to J. H. Roecker, *Tank 103-A Integrity Evaluation*, Westinghouse Hanford Company, Richland, Washington. - (k) Campbell, G. D., July 8, 1988, Internal Memorandum to R. K. Welty, Engineering Investigation: Interstitial Liquid Level Decrease in Tank 241-SX-104, 13331-88-416, Westinghouse Hanford Company, Richland, Washington. - (1) ERDA, 1975, Final Environmental Statement Waste Management Operations, Hanford Reservation, Richland, Washington, ERDA-1538, 2 vols., U.S. Energy Research and Development Administration, Washington, D.C. - (m) WHC, 1992a, Tank 241-SX-108 Leak Assessment, WHC-MR-0300, Westinghouse Hanford Company, Richland, Washington. - (n) WHC, 1992b, Tank 241-SX-109 Leak Assessment, WHC-MR-0301, Westinghouse Hanford Company, Richland, Washington. - (o) WHC, 1992c, Tank 241-SX-115 Leak Assessment, WHC-MR-0302, Westinghouse Hanford Company, Richland, Washington. # TABLE H-1. SINGLE-SHELL TANK LEAK VOLUME ESTIMATES (Sheet 5 of 5) - (p) WHC, 1992d, Occurrence Report, Apparent Decrease in Liquid Level in Single Shell Underground Storage Tank 241-T-101, Leak Suspected; Investigation Continuing, RL-WHC-TANKFARM-1992-0073, Westinghouse Hanford Company, Richland, Washington. - (q) WHC,1990b, A History of the 200 Area Tank Farms, WHC-MR-0132, Westinghouse Hanford Company, Richland, Washington. - (r) WHC, 1993a, Assessment of Unsaturated Zone Radionuclide Contamination Around Single-Shell Tanks 241-C-105 and 241-C-106, WHC-SD-EN-TI-185, REV OA, Westinghouse Hanford Company, Richland, Washington. - (s) WHC, 1994, Occurrence Report, Apparent Liquid Level Decrease in Single Shell Underground Storage Tank 241-T-111; Declared an Assumed Re-Leaker, RL-WHC-TANKFARM-1994-0009, Westinghouse Hanford Company, Richland, Washington. - (t) HNF, 1998, Agnew, S. F. and R. A. Corbin, August 1998, Analysis of SX Farm Leak Histories Historical Leak Model, (HLM), HNF-3233, Rev. 0, Los Alamos National Laboratory, Los Alamos, New Mexico # APPENDIX I # INTERIM STABILIZATION STATUS CONTROLLED, CLEAN, AND STABLE STATUS TABLE I-1. SINGLE-SHELL TANKS INTERIM STABILIZATION STATUS (Sheet 1 of 3) November 30, 1999 | | <u> </u> | | <u> </u> | 8888 | 1 * | 1-4 | 1 | 3887 | <u> </u> | T | · · · · · | |----------------|--|----------------|----------|----------------|-------------|--------------|-----------------|------------------|-------------------|----------------|-----------------| | i | ĺ <u> </u> | Interim | [] | . | 1 | Interim | | | l ₋ . | Interim | | | Tank | Tank | Stabil. | Stabil. | Tank | Tank | Stabil. | Stabil. | Tank | Tank | Stabil. | Stabil. | | Number | Integrity | Date (1) | Mathod | Number | Integrity | Date (1) | Method | Number | Integrity | Date (1) | Method | | A-101 | SOUND | N/A
08/89 | SN SN | C-101
C-102 | ASMD LKR | 11/83 | AR | T-108 | ASMD LKR | 11/78 | AR | | A-102
A-103 | SOUND
ASMD LKR | 06/88 | SN
AR | C-102 | SOUND | 09/95
N/A | JET | T-109 | ASMD LKR | 12/84 | AR | | A-103 | ASMD LKR | 09/78 | AR | C-103 | SOUND | 09/89 | SN | T-110
T-111 | SOUND
ASMD LKR | N/A
02/95 | HET | | A-106 | ASMD LKR | 07/79 | AR | C-105 | SOUND | 10/95 | AR | T-112 | SOUND | 03/81 | JET
AR(2)(3) | | A-106 | SOUND | 08/82 | AR | C-106 | SOUND | N/A | - ^n | T-201 | SOUND | 04/81 | AR (3) | | AX-101 | SOUND | N/A | | C-107 | SOUND | 09/85 | JET | T-201 | SOUND | 08/81 | AR | | AX-102 | ASMD LKR | 09/88 | SN | C-108 | SOUND | 03/84 | AR | T-203 | SOUND | 04/81 | AR | | AX-103 | SOUND | 08/87 | AR | C-109 | SOUND | 11/83 | AR | T-204 | SOUND | 08/81 | AR | | AX-104 | ASMD LKR | 08/81 | AR | C-110 | ASMD LKR | 05/95 | JET | TX-101 | SOUND | 02/84 | AR | | B-101 | ASMD IKR | 03/81 | SN | C-111 | ASMD LKR | 03/84 | SN | TX-102 | SOUND | 04/83 | JET | | B-102 | SOUND | 08/85 | SN | C-112 | SOUND | 09/90 | AR | TX-103 | SOUND | 08/83 | JET | | B-103 | ASMD IKR | 02/85 | SN | C-201 | ASMD LKR | 03/82 | AR | TX-104 | SOUND | 09/79 | SN | | B-104 | SOUND | 06/85 | SN(2) | C-202 | ASMD LKR | 08/81 | AR | TX-105 | ASMD LKR | 04/83 | JET | | B-105 | ASMD IKR | 12/84 | AR | C-203 | ASMD LKR | 03/82 | AR | TX-106 | SOUND | 06/83 | JET | | B-106 | SOUND | 03/85 | SN | C-204 | ASMO LKR | 09/82 | AR | TX-107 | ASMD LKR | 10/79 | AR | | B-107 | ASMD LKR | 03/85 | SN | S-101 | SOUND | N/A | | TX-108 | SOUND | 03/83 | JET | | B-108 | SOUND | 05/85 | SN | S-102 | SOUND | N/A | | TX-109 | SOUND | 04/83 | JET | | B-109 | SOUND | 04/85 | SN | S-103 | SOUND | N/A | | TX-110 | ASMD LKR | 04/83 | JET_ | | B-110 | ASMD LKR | 12/84 | AR(2) | S-104 | ASMD LKR | 12/84 | AR | TX-111 | SOUND | 04/83 | JET | | B-111 | ASMD LKR | 06/85 | SN)2) | S-105 | SOUND | 09/88 | JET | TX-112 | SOUND | 04/83 | JET | | B-112 | ASMD LKR | 05/86 | SN | S-108 | SOUND | N/A | | TX-113 | ASMD LKR | 04/83 | JET | | B-201 | ASMD LKR | 08/81 | AR (3) | S-107 | SOUND | N/A | | TX-114 | ASMD LKR | 04/83 | JET | | B-202
B-203 | SOUND
ASMD LKR | 05/85 | AR(2) | S-108 | SOUND | 12/96 | JET | TX-115 | ASMD LKR | 09/83 | JET | | B-203
B-204 | ASMD LKR | 06/84
06/84 | AR
AR | S-109
S-110 | SOUND | N/A | <u> </u> | TX-116 | ASMD LKR | 04/83 | JET | | BX-101 | ASMD LKR | 09/78 | AR | S-110 | SOUND | 01/97
N/A | JET | TX-117 | ASMD LKR | 03/83 | JET_ | | BX-102 | ASMD LKR | 11/78 | AR | S-112 | SOUND | N/A | | TX-118
TY-101 | SOUND
ASMD LKR | 04/83
04/83 | JET _ | | BX-102 | SOUND | 11/83 | AR(2) | SX-101 | SOUND | N/A | | TY-102 | SOUND | 09/79 | JET_ | | BX-104 | SOUND | 09/89 | SN | SX-102 | SOUND | N/A | | TY-103 | ASMD LKR | 02/83 | JET | | BX-105 | SOUND | 03/81 | SN | SX-103 | SOUND | N/A | | TY-104 | ASMD LKR | 11/83 | AR | | BX-106 | SOUND | 07/95 | SN | SX-104 | ASMD LKR | N/A | | TY-105 | ASMD LKR | 02/83 | JET | | BX-107 | SOUND | 09/90 | JET | SX-105 | SOUND | N/A | <u> </u> | TY-106 | ASMD LKR | 11/78 | AR | | BX-108 | ASMD LKR | 07/79 | SN |
SX-106 | SOUND | N/A | | U-101 | ASMD LKR | 09/79 | AR | | BX-109 | SOUND | 09/90 | JET | SX-107 | ASMD LKR | 10/79 | AR | U-102 | SOUND | N/A | | | BX-110 | ASMD LKR | 08/85 | SN | SX-108 | ASMD LKR | 08/79 | AR | U-103 | SOUND | N/A | | | BX-111 | ASMD LKR | 03/95 | JET | SX-109 | ASMD LKR | 05/81 | AR | U-104 | ASMD LKR | 10/78 | AR | | BX-112 | SOUND | 09/90 | JET | SX-110 | ASMD LKR | 08/79 | AR | U-105 | SOUND | N/A | | | BY-101 | SOUND | 06/84 | JET | SX-111 | ASMD LKR | 07/79 | SN | U-106 | SOUND | N/A | | | BY-102 | SOUND | 04/95 | JET | SX-112 | ASMD LKR | 07/79 | AR | W-107 | SOUND | N/A | | | BY-103 | ASMD LKR | 11/97 | JET | SX-113 | ASMD LKR | 11/78 | AR | W-108 | SOUND | N/A | | | BY-104 | SOUND | 01/85 | JET | SX-114 | ASMD LKR | 07/79 | AR | U-109 | SOUND | N/A | | | BY-105 | ASMD LKR | N/A | | SX-115 | ASMD LKR | 09/78 | AR | U-110 | ASMD LKR | 12/84 | AR | | BY-106 | ASMD LKR | N/A | | T-101 | ASMD LKR | 04/93 | SN | U-111 | SOUND | N/A | | | BY-107 | ASMD LKR | 07/79 | JET | T-102 | SOUND | 03/81 | AR(2)(3) | U-112 | ASMD LKR | 09/79 | AR | | BY-108 | ASMD LKR | 02/85 | JET | T-103 | ASMD LKR | 11/83 | AR | U-201 | SOUND | 08/79 | AR | | BY-109 | SOUND | 07/97 | JET | T-104 | SOUND | 11/99(4) | JET | U-202 | SOUND | 08/79 | SN | | BY-110 | SOUND | 01/85 | JET | T-106 | SOUND | 06/87 | AR | U-203 | SOUND | 08/79 | AR | | BY-111 | SOUND | 01/85 | JET | T-106 | ASMD LKR | 08/81 | AR | U-204 | SOUND | 08/79 | SN | | BY-112 | SOUND | 06/84 | JET | T-107 | ASMD LKR | 05/96 | JET | | | | | | LEGEND: | | | | | | | | | | | | | | dministratively | • | | | | | | | abilized Tank | - | 120 | | | Saltwell jet pur | • | | | tial liquid | | | Not Yet I | nterim Stabili: | zed | 29 | | | SN = Supernate pumped (Non-Jet pumped) | | | | | | i | | | | | | | Not yet interim | | | | | | | Total | Single-Shell T | anks | 149 | | ASMD I | LKR = Assume | ed Leaker | | | | | | | | | | | | | | | | | | <u> </u> | | | | | # TABLE I-1. SINGLE-SHELL TANKS INTERIM STABILIZATION STATUS (sheet 2 of 2) #### Footnotes: - (1) These dates indicate when the tanks were actually interim stabilized. In some cases, the official interim stabilization documents were issued at a later date. - (2) Although tanks BX-103, T-102 and T-112 met the interim stabilization administrative procedure at the time they were stabilized, they no longer meet the recently updated administrative procedure. The tanks were reevaluated in 1996 and memo 9654456, J. H. Wicks to Dr. J. K. McClusky, DOE-RL, dated September 1996, was issued which recommended that no further pumping be performed on these tanks, based on an economic evaluation. An intrusion investigation was completed on tank B-202 in 1996 because of a detected increase in surface level. As a result of this investigation, it was determined that this tank no longer meets the recently updated administrative procedure for 200 series tanks. - (3) Original Interim Stabilization data are missing on four tanks: B-201, T-102, T-112, and T-201. - (4) Tank 241-T-104 was Interim Stabilized on November 19, 1999. In-tank video taken October 7, 1999, shows the surface is clearly sludge-type waste with no saltcake present. No visible water on surface. Waste surface appears level across tank with numerous cracks. There is a minimal collapsed area around the saltwell screen, with no visible bottom. # TABLE I-2. SINGLE-SHELL TANK INTERIM STABILIZATION MILESTONES November 30, 1999 (sheet 1 of 2) New single-shell tank interim stabilization milestones were negotiated in 1999 and are identified in the "Consent Decree." The Consent Decree was approved on August 16, 1999. # CONSENT DECREE Attachments A-1 and A-2 Following is the schedule for pumping liquid waste from the remaining twenty-nine (29) single-shell tanks. This schedule is enforceable pursuant to the terms of the Decree except for the "Project Pumping Completion Dates" which are estimates only and not enforceable. | ank Designation | Pumping Initiated | Projected Pumping
Completion Date | |-------------------|--|--------------------------------------| | . T-104 | Already initiated | May 30, 1999 | | . T-110 | Already initiated | May 30, 1999 | | . SX-104 | Already initiated | December 30, 2000 | | \$X-106 | Already initiated | December 30, 2000 | | . S-102 | Already initiated | March 30, 2001 | | . S-106 | Already initiated | March 30, 2001 | | . S-103 | Already initiated | March 30, 2001 | | . U-103* | September 26, 1999 (8 months ahead of schedule) | April 15, 2002 | | . U-105* | June 15, 2000 | April 15, 2002 | | 0. U-102* | June 15, 2000 | April 15, 2002 | | 1. U-109* | June 15, 2000 | April 15, 2002 | | 2. A-101 | October 30, 2000 | September 30, 2003 | | 3. <u>AX-101</u> | October 30, 2000 | September 30, 2003 | | 4. SX-105 | March 15, 2001 | February 28, 2003 | | 5. SX-103 | March 15, 2001 | February 28, 2003 | | 6. SX- 101 | March 15, 2001 | February 28, 2003 | | 7. <u>U-106*</u> | March 15, 2001 | February 28, 2003 | | 8. BY-106 | July 15, 2001 | June 30, 2003 | | 9. BY-105 | July 15, 2001 | June 30, 2003 | | O. U-108 | December 30, 2001 | August 30, 2003 | | I. U-107 | December 30, 2001 | August 30, 2003 | | 2. S-111 | December 30, 2001 | August 30, 2003 | | 3. SX-102 | December 30, 2001 | August 30, 2003 | | 4. U-111 | November 30, 2002 | September 30, 2003 | | 5. S-109 | November 30, 2002 | September 30, 2003 | | 5. S-112 | November 30, 2002 | September 30, 2003 | | 7. S-101 | November 30, 2002 | September 30, 2003 | | 8. S-107 | November 30, 2002 | September 30, 2003 | | | than December 30, 2000, DOE will determine whether the org | | | | will be pumped from Tank C-103 together or separately, and wil | | No later than December 30, 2000, DOE will determine whether the organic layer and pumpable liquids will be pumped from Tank C-103 together or separately, and will establish a deadline for initiating pumping of this tank. The parties will incorporate the initiation deadline into this schedule as provided in Section VI of the Decree. ^{*} Tanks containing organic complexants. # TABLE I-2. SINGLE-SHELL TANK INTERIM STABILIZATION MILESTONES (sheet 2 of 2) <u>Completion of Interim Stabilization</u>. DOE will complete interim stabilization of all 29 single-shell tanks listed above by September 30, 2004. ### Percentage of Pumpable Liquid Remaining to be Removed. | 93% of Total Liquid | 9/30/1999 | |---|-----------| | 38% of Organic Complexed Pumpable Liquids | 9/30/2000 | | 5% of Organic Complexed Pumpable Liquids | 9/30/2001 | | 18% of Total Liquid | 9/30/2002 | | 2% of Total Liquid | 9/30/2003 | The "percentage of pumpable liquid remaining to be removed" is calculated by dividing the volume of pumpable liquid remaining to be removed from tanks not yet interim stabilized by the sum of the total amount of liquid that has been pumped and the pumpable liquid that remains to be pumped from all tanks. TABLE I-3. SINGLE-SHELL TANKS STABILIZATION STATUS SUMMARY November 30, 1999 | Partial Interim Isolated (PI) | Intrusion Prevent | ion Completed (IP) | Interim Stabiliz | zed (IS) | |-------------------------------|---|--------------------|--|-----------------------| | EAST AREA | EAST AREA | WEST AREA | EAST AREA | WEST AREA | | A-101 | A-103 | S-104 | A-102 | S-104 | | A-102 | A-104 | S-105 | A-103 | S-105 | | | A-105 | | A-104 | S-108 | | AX-101 | A-106 | SX-107 | A-105 | S-110 | | | | SX-108 | A-106 | | | BY-102 | AX-102 | SX-109 | | SX-107 | | BY-103 | AX-103 | SX-110 | AX-102 | SX-108 | | BY-105 | AX-104 | SX-111 | AX-103 | SX-109 | | BY-106 | | SX-112 | AX-104 | SX-110 | | BY-109 | B-FARM - 16 tanks | SX-113 | | SX-111 | | | BX-FARM - 12 tanks | SX-114 | B-FARM - 16 tanks | SX-112 | | C-103 | | SX-115 | BX-FARM - 12 tanks | SX-113 | | C-105 | BY-101 | | | SX-114 | | C-106 | BY-104 | T-102 | BY-101 | SX-115 | | | BY-107 | T-103 | BY-102 | | | | BY-108 | T-105 | BY-103 | T-101 | | WEST AREA | BY-110 | T-106 | BY-104 | T-102 | | S-101 | BY-111 | T-108 | BY-107 | T-103 | | S-102 | BY-112 | T-109 | BY-108 | T-104 | | S-103 | | T-112 | BY-109 | T-105 | | S-106 | C-101 | T-201 | BY-110 | T-106 | | S-107 | C-102 | T-202 | BY-111 | T-107 | | S-108 | C-104 | T-203 | BY-112 | T-108 | | S-109 | C-107 | T-204 | C 404 | T-109 | | S-110 | C-108
C-109 | TV FADM 48 tenin | G-101
G-102 | T-111 | | S-111 | C-109
C-110 | TX-FARM - 18 tanks | | T-112 | | S-112 | C-110
C-111 | TY-FARM - 6 tanks | C-104
C-105 | T-201
T-202 | | SX-101 | C-112 | U-101 | C-105 | T-203 | | SX-101
SX-102 | C-201 | U-104 | C-107 | T-203 | | SX-103 | C-202 | U-112 | C-109 | 1-20-4 | | SX-105 | C-203 | U-102 | C-110 | TX-FARM - 18 tanks | | SX-105 | C-204 | U-202 | C-111 | TY-FARM - 6 tanks | | SX-106 | East Area 55 | 7 | C-112 | I I -I VIVIN - O MINO | | 3A-100 | | U-204 | C-201 | U-101 | | T-101 | | West Area 53 | C-202 | U-104 | | T-104 | | Total 108 | C-203 | U-110 | | T-107 | | | C-204 | U-112 | | T-110 | | | East Area 50 | | | T-111 | | | osporacionale de del distribution de la chimidal l | U-202 | | | Controlled, Clean, and | d Stable (CCS) | | U-203 | | U-102 | , | | | U-204 | | U-103 | EAST AREA | WEST AREA | | West Area 60 | | U-105 | BX-FARM - 12 Tanks | TX-FARM - 18 tanks | | Total 120 | | U-106 | | TY FARM - 6 tanks | | | | U-107 | East Area 12 | West Area 24 | | | | U-108 | To the real properties of the property | Total 36 | | | | U-109 | | | | | | U-110 | Note: CCS activities ha | ive been deferred | | | | U-111 | until funding is availabl | | | | | West Area | | | | | | Total | | | | | | | | | | | | • | • | • | . | | ### **DISTRIBUTION** # Number of copies ### OFFSITE - USA #### 2 <u>Congress of the United States</u> U. S. Senate 717 Hart Senate Building Washington D.C. 20510 Senator Ron Wyden U. S. House
of Representatives 1323 Longworth House Office Building Washington D. C. 20515 Representative Richard "Doc" Hastings, 4th District ### 5 U. S. Department of Energy-Headquarters 1000 Independence Avenue, SW Washington, D. C. 20585 H. Calley EM-38 Cloverleaf Bldg. Kurt Juroff EM-38 Cloverleaf Bldg. William M. Levitan EM-1 FORS/5A-014 Ralph Lightener EM-38 Cloverleaf Bldg. #### U. S. Department of Engergy-Headquarters 19901 Germantown Rd Germantown, MD 20874 Kenneth Lang EM-38 Cloverleaf Building ### 1 U. S. Nuclear Regulatory Commission Division of Fuel Cycle, Safeguards & Security Mail Stop T8-A33 Washington, DC 20555 Robert Pierson, Chief FSPB/FCSS (ADDRESSEE ONLY) ### 2 Washington State Department of Ecology Nuclear & Mixed Waste Management Program P.O. Box 47600 Olympia, WA 98504-7600 Library ### Washington State Department of Ecology Nuclear Waste Program 300 Desmond Drive Lacey, WA 98504 R. Stanley 1 Washington State Department of Health Radiation Protection 7171 Cleanwater Lane Box 47827 Olympia, WA 98504-7827 Ed Bricker 1 Oregon State Department of Energy 625 Marion St. NE, Suite 1 Salem, OR 97301 Dirk Dunning 1 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6180 C. Forsberg MS-6180 1 Los Alamos National Laboratory P. O. Box 1663 Los Alamos, NM 87545 l Sandia National Laboratories 1515 Eubank, NE P. O. Box 5800 Albuquerque, NM 87185 Scott Slezak, Organization 2161 MS 0716 1 Donald T. Oakley 9612 Hall Road Potomac, MD 20854 1 Foster-Miller, Inc. Power Systems Technology Group 350 Second Avenue Waltham, MA 02451-1196 Maureen Williams 1 National Research Council 2101 Constitution Ave, N.W. Washington D. C. 20418 Robert S. Andrews, Senior Staff Officer, MS HA456 1 Government Accountability Project West Coast Office 1402 Third Avenue, Suite 1215 Seattle, WA 98101 Thomas E. Carpenter, Director | 1 | Nuclear Systems Associates, In | <u>ic. (NSA)</u> | |-------------|---|------------------| | • | 2741 Saturn Street | | | | Brea, CA 92821 | | | | Charles Divona | | | 1 | MACTEC | | | 1 | MACTEC
8310 Centerbrook Place | | | | Alexandra, VA 22308 | | | | Michael, VII 22300 | | | | Stan Blacker, Vice President | | | TRI-CITIES: | | | | 1 | Foster Wheeler Environmental | Corp. | | - | 3200 George Washington Way, S | | | | Richland, WA 99352 | | | | R. J. Roberts | | | _ | | | | 1 | ARES Corporation | | | | 636 Jadwin Ave., Suite B | | | | Richland, WA 99352 | | | 1 | Bahad Tashuisal Samisas | | | 1 | <u>Babad Technical Services</u>
2540 Cordoba Court | | | | Richland, WA 99352 | | | | Richalid, WA 99332 | | | ī | Vista Research, Inc. | | | • | 3000 George Washington Way, S | uite 2C | | | Richland, WA 99352 | | | | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | Phil Ohl | | | 1 | Wastren Inc. | | | | 1050 Gilmore Ave, Suite C | | | | Richland, WA 99352 | | | | Gary Dunford | | | | Gary Dunoid | | | 1 | R. K. Welty | | | | 409 S. 41st Ave | | | | West Richland, WA 99353 | | | | | | | ONGITE | | | | ONSITE | | | | 1 | Bechtel Hanford, Inc. | | | 1 | J. P. Shearer | H0-20 | | | J. A., DAIGHEOL | 110-20 | | 2 | BAT | | | - | R. T. Winward | H6-60 | | | J. L. Kovach | H6-61 | | | | | | 2 | MACTEC - Meier Associates, | LLC | | | J. D. Bingham | R2-11 | | | M. A.Kufahl | R2-11 | | 2 | MACTEC - ERS | | | | | | | |-----|---|--|--|--|--|--|--| | | J. F. Bertsch | B1-42 | | | | | | | | R. G. McCain | B1-42 | | | | | | | _ | | | | | | | | | 1 | MACTEC | _ | | | | | | | | W. J. Stokes | R2-89 | | | | | | | • | | _ | | | | | | | 1 | General Accounting Off | | | | | | | | | C. R. Abraham | A1-80 | | | | | | | , | 777 11 4 G4 4 75 | | | | | | | | 1 | Washington State Depart | | | | | | | | | Library | B5-18 | | | | | | | 1 | II C Frankrammantal Des | | | | | | | | 1 | U. S. Environmental Pro
D. R. Sherwood | | | | | | | | | D. R. Sherwood | B5-01 | | | | | | | 17 | U.S. Department of En | ergy-Office of River Protection | | | | | | | | | | | | | | | | | H. L. Boston | A7-50 | | | | | | | | D. C. Bryson | H6-60 | | | | | | | | J. M. Clark | H6-60 | | | | | | | | J. J. Davis | H6-60 | | | | | | | | R. G. Harwood | H6-60 | | | | | | | | R. D. Hildebrand | A5-13 | | | | | | | | D. H. Irby | H6-60 | | | | | | | | C. Pacheco | H6-60 | | | | | | | | T. E. Olds | A7-75 | | | | | | | | S. H. Pfaff | H6-60 | | | | | | | | M. L. Ramsay | H6-60 | | | | | | | | M. J. Royack | H6-60 | | | | | | | | J. S. Shuen | H6-60 | | | | | | | | A. B. Sidpara | H6-60 | | | | | | | | R. A. Stolberg | A4-81 | | | | | | | | D. J. Williams | | | | | | | | | | T6-03 | | | | | | | | D. D. Wodrich | H6-60 | | | | | | | | Reading Room | H2-53 | | | | | | | 9 | Pacific National Northwe | est Lahoratories | | | | | | | | | ZE Z | | | | | | | | S. A. Bryan | P7-25 | | | | | | | | J. A. Dirks | K8-17 | | | | | | | | R. E. Gephart | K9-76 | | | | | | | | S.A. Hartley | K5-12 | | | | | | | | D.G. Horton | K6-81 | | | | | | | | J. L. Huckaby | K7-15 | | | | | | | | B. E. Opitz | K6-75 | | | | | | | | R. D. Scheele | P7-25 | | | | | | | | L. A. Smyser | H6-61 | | | | | | | | | 110 01 | | | | | | | 114 | CH2M Hill (CHG), and Affiliated Companies | | | | | | | | | D I All | The #0 | | | | | | | | D. I. Allen | R2-50 | | | | | | | | J. J. Badden | S5-07 | | | | | | | | D. G. Baide | S5-05 | | | | | | | | L. Bedford | R2-84 | | | | | | | | T. M. Blaak | S5-13 | | | | | | | | V. C. Boyles | R2-11 | | | | | | | | P. J. Brackenbury | R3-73 | | | | | | | J. M. Brinson-Wagner | S7-20 | |-----------------------|-------| | C. B. Bryan | R2-58 | | J. W. Cammann | R2-12 | | K. G. Carothers | R2-11 | | R. J. Cash | R1-44 | | W. L. Cowley | R1-44 | | C. Defigh-Price | R2-12 | | D. K. DeFord | S7-24 | | W. T. Dehn | H6-63 | | M. P. Delozier | H7-08 | | M. L. Dexter (12) | R1-51 | | W. T. Dixon | R3-01 | | R. A. Dodd | R3-72 | | A. C. Etheridge | H7-07 | | S. D. Estey | R2-11 | | J. E. Ferguson | H7-06 | | R. A. Flores | S8-09 | | L. A. Fort | R2-12 | | K. D. Fowler | R2-11 | | G. T. Frater | K9-46 | | J. R. Freeman-Pollard | R2-89 | | K. A. Gasper | H6-64 | | B. C. Gooding | T4-01 | | M. D. Guthrie | S6-74 | | D. B. Hagmann | R2-89 | | B. M. Hanlon (10) | T4-08 | | G. N. Hanson | T4-07 | | W.M. Harty Jr. | S5-13 | | D.C. Hedengren | R2-11 | | B. A. Higley | R3-73 | | K. M. Hodgson | R2-11 | | T. M. Hohl | R3-73 | | J. L. Homan | R3-72 | | H. R. Hopkins | R2-58 | | S. E. Hulsey | S7-86 | | M. N. Islam | R1-43 | | O. M. Jaka | S7-24 | | P. Jennings | R2-84 | | B.A. Johnson | S5-03 | | G. D. Johnson | R1-44 | | J. Kalia | R1-43 | | M. R. Kembel | S7-03 | | R. A. Kirkbride | R3-73 | | P. F. Kison | T4-07 | | N. W. Kirch | R2-11 | | J. S. Konyu | R4-04 | | J. G. Kristofzski | H6-62 | | M. J. Kupfer | R3-75 | | M. A. Lane | G3-12 | | C.E. Leach | R1-44 | | J. W. Lentsch | R3-25 | | G. T. MacLean | B1-70 | | D. J. McCain | R2-11 | | J. M. Morris | R2-84 | | M. A. Payne | R2-58 | | C. Oldham | H6-60 | | R. E. Pohto | R2-84 | | R. E. Raymond (2) | S7-70 | | | | | D. S. Rewinkel | S7-83 | |----------------------------|-------| | C. J. Rice | R2-53 | | W. E. Ross | R2-50 | | D. J. Saueressig | | | <u> </u> | S7-20 | | J. S. Schofield | S7-12 | | R. E. Schreiber | B2-05 | | N. J. Scott-Proctor | S5-01 | | M. L. Sheriff | S5-07 | | D. H. Shuford | R1-56 | | S. G. Smith | L6-37 | | J. N. Strode | R2-11 | | R. R. Thompson | R2-12 | | D. T. Vladimiroff | S7-20 | | J. A. Voogd | H6-64 | | A. E. Young (6) | R1-10 | | F. A. Zak | S7-34 | | Central Files | B1-07 | | 200 West Shift Office | T4-00 | | 200 East Shift Office | S5-04 | | Environmental | | | Data Mgmt Center (2) | H6-08 | | Unified Dose Assessment | | | Center (UDAC) | A0-20 | | Document Processing Center | A3-94 |